
Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

1

NEW STRATEGIES FOR IMPROVING PERFORMANCE AND PRECISION IN CMAQ AND
GMI MODELS

George Delic*

HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

When discussing topics such as energy,

climate, and pollutant transport from regional to
global scales, it is appropriate to also review some
algorithms common to both the Community Multi-
scale Air Quality Model (CMAQ) and the Global
Modeling Initiative (GMI) chemistry and transport
model (CTM), as respectively developed (or
supported) by the U.S. EPA and NASA. Some
motivations of new strategies for improvement in
these models include issues such as increasing
model complexity, changes in computer
architectures, and developments in compiler
technology.

To describe production and loss of chemical
species in reaction mechanisms, both CMAQ and
GMI allow a choice of various gas-phase solvers
that implement different algorithms for integration
of a sparse stiff system of ordinary differential
equations. One such solver is the Gear algorithm
and its use is common to both CMAQ and GMI.
The implementation of this solver in both models is
based on the work of Jacobson and Turco (1994)
for the JSPARSE method.

The HiPERiSM version replaces the legacy
sparse matrix methodology of Jacobson and Turco
by a more modern one (FSPARSE) described by
Delic (2014). This work reports another variant of
the FSPARSE method with a memory model
better suited to the commodity architectures now
in use.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each of the two platforms, Intel and
AMD, has a total of 8 and 48 cores, respectively.
This cluster is used for either MPI only, or hybrid
thread-parallel OpenMP plus MPI execution.

* Corresponding author: George Delic,

george@hiperism.com.

2.2 Compilers

This report implemented the Portland Group®
(PGI) compiler (release 13.4) for CMAQ 4.7.1 on
64-bit Linux operating systems and hardware from
the Intel Corporation (INTEL) and Advanced Micro
Devices (AMD) shown in Table 2.1.

2.3 Episode studied

For all CMAQ 4.7.1 results reported here the
model episode selected was for August 09, 2006,
using data provided by the U.S. EPA. This episode
has the CB05 mechanism with Chlorine
extensions and the Aero 4 version for PM
modeling. The episode was run for a full 24 hour
scenario on a 279 X 240 Eastern US domain at 12
Km grid spacing and 34 vertical layers for a total of
2.3 million grid cells.

Table 2.1. Platforms at HiPERiSM Consulting, LLC

Platform AMD INTEL

Processor
AMD™ Opteron

6176SE
Intel™ IA32

W5590

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3

Power consumption 105 Watts 130 Watts

Cores per processor 12 4

Power consumption per core 8.75 Watts 32.5 Watts

Processor count 4 2

Total core count 48 8

Clock 2.3GHz 3.33GHz

Band-width 42.7 GB/sec 64.0 GB/sec

Bus speed 1333 MHz 1333 MHz

L1 cache 64KB 64KB

L2 cache 512 KB(1) 256MB

L3 cache(2) 12MB 8MB

Total memory 128GB 96GB

(1) Per core, (2) Per socket

3. CMAQ AND GMI MEMORY MODEL

3.1 Background

The chemistry-transport model in CMAQ
(CCTM) and GMI in CTM allow a choice of various
gas-phase solvers that implement different
algorithms for integration of a stiff system of
ordinary differential equations (ODE), with sparse

Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

2

Jacobians, to describe production and loss of
chemical species in reaction mechanisms. When
the Gear algorithm is used for the system of
ODE’s it accounts for over 50% of the wall clock
time of a simulation in CMAQ.

The modifications introduced in JSPARSE
took advantage of vector processing on the
pipelined vector architectures of Cray computers
(Cray). However, on Cray computers, the cost was
prohibitive if the Gear method is applied to each
cell of a multidimensional grid. Therefore one
modification introduced in JSPARSE was to apply
the Gear algorithm to a block of grid cells
simultaneously. This modification allowed vector
instructions to be applied to innermost loops over
the block dimension length, NUMCELLS, equal to
the size of the block (BLKSIZE). This method has
the disadvantage that it requires a memory copy of
concentrations from an array dimensioned by
column, row, and level, into a one-dimensional
array indexed by cell count using indirect
addressing. Nevertheless, this blocking method
worked well on Cray architectures (Cray) with 128
word vector registers and hardware gather-scatter
operations using a BLKSIZE ~500 grid cells. But
this legacy method relies on hardware features of
a 20 year old architecture that are no longer
available in current commodity CPUs. Thus this
choice has a memory copy penalty on commodity
CPUs where a BLKSIZE larger than approximately
64 leads to increased computational time (Delic,
2013). Another disadvantage of choosing larger
values of BLKSIZE is that the Gear solver time
step size is the same for all cells in a block, and
cells with faster rates of species concentration
change may not converge as well as those cells
with slower concentration rate changes (i.e. cells
differ in “stiffness”). To ameliorate the negative
consequences of disparate cell stiffness, the
algorithm in JSPARSE offers an option to order all
cells in the grid into blocks of cells having similar
stiffness, with each block having a length of
NUMCELLS. However, on commodity CPUs, the
blocking technique used in JSPARSE leads to
excessive data translation look-aside buffer (TLB)
cache misses that inevitably stalls the CPU
(Young and Delic, 2008). This indicator suggests
that memory latency is expanded as the CPU
waits for data address translation and fetch from
higher up the memory hierarchy. The cause is a
memory model that persistently maps from a
regular grid of cells populating a global array
dimensioned by column, row, and level (or layer),
to a single linear array on each call to the Gear
solver. Each block of cells in the linear array is

then passed to the CCTM for the chemistry time
step integration.

3.2 Performance profile of CMAQ

Table 6 lists time expended by each the
physical processes (in SCIPROC) in the standard
release of CMAQ for the 24 hour episode
described in Section 2.3, with serial execution for
one MPI process (NP=1), using the Portland
compiler on the Intel node. The last column gives
the fraction of the total runtime used by the
respective processes and it is clear that CCTM
dominates. Therefore an improvement in the
CHEM subroutine will significantly impact the total
wall clock time.

Table 3.1. CMAQ science processes and wall clock
times for a one-day simulation.

Process and
function

Subroutine
name

Wall
clock
time
(hours)

Fraction
of total
(percent)

Asymmetric
convective model
(ACM) for vertical
diffusion

VDIFF 5.30 13.7

Couple
concentration values
for transport

COUPLE 0.13 0.33

Advection in the
horizontal plane

HADV 2.00 5.15

Advection in the
vertical (Z) direction

ZADV 0.81 2.09

Horizontal diffusion HDIFF 0.17 0.45

Decouple
concentration values
for transport

DECOUPLE 0.19 0.49

ACM and resolved
cloud processes

CLDPROC 0.74 1.92

CCTM CHEM 23.34 60.1

Aerosol species
processing

AERO 6.13 15.8

For the same 24 hour episode Fig. 3.1 shows
a runtime profile of the fraction of wall clock time
for three of the most time consuming physical
processes in CMAQ: CHEM, AERO, and VDIFF.
The balance between these three shifts depending
on the simulation hour, but CHEM always
dominates

3.3 Improvements in the memory model

HiPERiSM’s improvements for the
Rosenbrock solver (Delic, 2013) have been
applied to the Gear ODE algorithm. A previous
report by Delic (2014) describes (for the Gear
ODE algorithm) how the sparse solver
(FSPARSE) replaces the legacy JSPARSE sparse

Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

3

solver method, but still retains the blocking method
and stiffness ordering described in Section 3.1.

Fig 3.1. This shows the fraction of total wall clock time
for selected processes in SCIPROC for all 12 x 24 calls
in a 24-hour simulation of the U.S. EPA standard code
with 1 MPI process using the Portland compiler on the
Intel node. Only CHEM, AERO, and VDIFF are shown
here, together with the sum (SUM) of the last two.

This report describes an alternative approach
that improves the memory model in GEAR-HC.
This alternative dispenses with copying blocks of
cells into a linear array and with the stiffness
ordering of blocks of cells. The FSPARSE method
integrates the new solver into the transit over the
regular grid domain ordered by column, row, and
level. Therefore in this version of CMAQ the
CCTM is called for each individual cell in the grid.
This is achieved in a thread parallel region over a
grid column index:

C$OMP DO SCHEDULE (DYNAMIC,MY_CHUNK)

 blk_col: DO COL = 1, MY_NCOLS

 blk_row: DO ROW = 1, MY_NROWS

 blk_lev: DO LEV = 1, NLAYS

 ………

 END DO blk_lev

 END DO blk_row

 END DO blk_col

In this cell-centric version, each thread ranges
over all rows and levels for a selected column.
This has two benefits (a) no stiffness ordering of
cells is required as the gear solver is applied to
each cell individually, and (b) the memory model is
improved because a redundant memory copy is
removed. To distinguish results of the two versions
of GEAR-HC the following discussion will
designate the block cell version as BLOCK, and
the individual grid cell version as CELL.

Fig 3.2. This shows the CHEM wall clock time for
GEAR-EPA and GEAR-HC (in the CELL version) with 2
to 8 threads.

Fig 3.3. This shows the speed up in CHEM of GEAR-HC
(in the CELL version) versus the GEAR-EPA, with 2 to 8
threads.

In this section, and the next, two performance
metrics are introduced to assess thread parallel
performance in the GEAR-HC modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA runtime,

(b) Scaling is the gain in runtime with thread
counts larger than 1, relative to the result
for a single thread.

For the performance of CHEM in the 12 x 24
calls of the 24 hour simulation two more results
are presented for the case of 1 MPI process using
the Portland compiler on the Intel node. Fig. 3.2
shows the wall clock time for calls to CHEM in the
standard EPA version (GEAR-EPA) and the CELL
version of GEAR-HC with increments of OpenMP
threads from 2 to 8. Except for the 2 thread case,
the wall clock time is greatly reduced in all 12 x 24
calls.

Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

4

To show the parallel performance more
clearly, Fig. 3.3 shows the speed up for calls to
CHEM by GEAR-HC (in the CELL version) versus
the GEAR-EPA, with 2 to 8 threads. This speed up
varies from 2.5 to 5 with 8 threads, and increments
substantially from 6 to 8 threads.

4. PERFORMANCE OF GEAR-HC

4.1 Speedup and scaling for 1 MPI process

For the CMAQ chemistry solver, in the BLOCK
version, the grid of 2.3 million grid cells is
partitioned into blocks of size BLKSIZE and these
blocks are distributed to threads in a thread team
in GEAR-HC. In the standard U.S. EPA
distribution BLKSIZE=50 is fixed, but in the
BLOCK version of GEAR-HC BLKSIZE= 48. As
described in Section 3.3, in the CELL version of
GEAR-HC, no blocking of cells is used. Instead
the Gear solver is applied to each cell in the grid
domain. Table 4.1 shows the wall clock time (in
hours) for the BLOCK and CELL versions of
GEAR-HC. Also shown are the times for the
standard U.S. EPA version. Values are shown for
selected cases of the MPI process count (NP).
Speedup and scaling metrics are calculated from
the values of Table 4.1.

Table 4.1. Wall clock times (in hours) for the U.S. EPA
(GEAR-EPA) and GEAR-HC in BLOCK and CELL
versions of CMAQ on the AMD platform for the Portland
compiler.

MPI
processes

(NP)
G

E
A

R
-H

C

G
E

A
R

-E
P

A

GEAR-HC

Time in hours by thread count

1 2 4 6 8

1 B
L
O

C
K

83.3 39.7 28.4 22.9 49.1 46.8

2 42.3 25.1 23.1

4 22.5 13.6 12.9

8 11.6 7.8

1 C
E

L
L

83.3 136.9 84.5 59.3 51.3 46.3

2 42.3 26.4 23.7

4 22.5 14.4 13.3

8 11.6 7.9

For the NP=1 case Fig. 4.1 shows the wall

clock time for EPA and the two GEAR-HC
versions of CMAQ for the 24 hour simulation. With
a single OpenMP thread the CELL version uses
more time because there are no vector loops over
the number of cells in a block of cells. However, as
is evident, the gain in performance with increasing
thread count eliminates the discrepancy between
BLOCK and CELL version with 6 or more threads.

Fig. 4.2 shows the speedup of GEAR-HC over
GEAR-EPA corresponding to the values of Fig.
4.1. With 6 or 8 threads speedup is similar for
either BLOCK or CELL versions. Fig. 4.3 shows
the results for thread scaling on a very refined
vertical scale. The apparent greater scaling for the
CELL version of GEAR-HC is the consequence of
the longer runtime with a single thread.

Fig 4.1. Wall clock time (hours) of GEAR-EPA (EPA)
and GEAR-HC for CMAQ 4.7.1 with a single MPI
process (NP=1). For OpenMP thread counts from 1 to 8
the block (BLOCK) and cell (CELL) versions of GEAR-

HC are compared.

Fig 4.2. Speed up of GEAR-HC for CMAQ 4.7.1 over
the serial GEAR-EPA version with a single MPI process
(NP=1). For OpenMP thread counts from 1 to 8 the
block (BLOCK) and cell (CELL) versions of GEAR-HC
are compared.

4.2 Speedup and scaling for MPI process
counts more than 1

For the NP=1 to 8 cases of Table 4.1, Fig. 4.4
shows the wall clock time for EPA and the two
GEAR-HC versions of CMAQ, for the 24 hour

Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

5

simulation. With 6 or 8 OpenMP threads the
BLOCK and CELL versions have similar results.
However the gain in performance with increasing
thread count diminishes because the grid domain
size for each MPI process shrinks as NP
increases. This reduces the number of cells
available to the thread team. This is confirmed in
the speedup results shown in Fig. 4.5, where
speedup results decline as the NP count
increases. Nevertheless, speedup is in the range
1.5 to 1.7 when NP is greater than 2.

Fig 4.3. Scaling of GEAR-HC with 2 to 8 threads for
CMAQ 4.7.1 over the single thread result for one MPI
process (NP=1). At each thread count the block
(BLOCK) and cell (CELL) versions of GEAR-HC are
compared.

Fig 4.4. Wall clock time (hours) of GEAR-EPA (EPA)
and GEAR-HC for CMAQ 4.7.1 with four different
choices of the number of MPI processes (NP). This
compares the block (BLOCK) and cell (CELL) version of
GEAR-HC with the same OpenMP thread count (6 or 8).

Fig 4.5 Speed up of GEAR-HC for CMAQ4.7.1 over the
serial GEAR-EPA version with four different choices of
the number of MPI processes (NP). For the same
OpenMP thread count (6 or 8) the block (BLOCK) and
cell (CELL) version of GEAR-HC are compared.

5. NUMERICAL ANALYSIS

5.1 Precision control in CCTM

The two GEAR-HC sparse methods, BLOCK
and CELL, solve the same sparse system, but
differ in the number of chemistry time steps
required to solution. Convergence is controlled in
both methods by accuracy parameters ATOL and
RTOL. Inspection of the convergence pattern
shows that GEAR-EPA repeatedly exceeds the
upper time step bound and terminates earlier. This
is the result of less accuracy in GEAR-EPA
because of numerical precision issues. The
consequences for precision in species
concentrations have been explored in detail
elsewhere (Delic, 2013, 2014).

The CCTM solver uses double precision
arithmetic but accepts some input data from single
precision variables (temperature, pressure,
photolysis rates, reaction rates, etc.). The U.S.
EPA code implements mixed mode arithmetic and
is not consistent in promoting constants or
variables from single to double precision
arithmetic. This is particularly egregious in the
CALCKS procedure where thermal and photolytic
reaction rates are computed using single precision
arithmetic. Therefore using an ATOL=1.E-09 is
moot for the JSPARSE method in the GEAR-EPA
version.

In the GEAR-HC FSPARSE algorithm
arithmetic consistency has been implemented
throughout the chemistry solver and because of
the higher accuracy, a reduced ATOL value is
tolerated. This reduces the number of chemistry

Presented at the 13th Annual CMAS Conference, Chapel Hill, NC, October 27-29 2014

6

time step iterations in GEAR-HC and therefore
ATOL=1.E-07 is the default used in GEAR-HC.
Due to the higher precision in the convergence
criterion when it is applied in the Gear ODE solver
in the CELL version of GEAR-HC, no sacrifice in
accuracy of chemical species concentration is
expected.

6. LESSONS LEARNED

6.1 Benefits of the FSPARSE method

Comparing runtime performance for CMAQ
4.7.1 in the new OpenMP parallel version with the
U.S. EPA release showed benefits such as:

 A speedup ~1.5 with 8 parallel threads and
NP=8.

 A speedup ~1.7 with 6 parallel threads and
NP=4.

6.2 Numerical precision issues

A comparison of numerical precision for CMAQ
4.7.1 in the new OpenMP parallel version with the
U.S. EPA release suggest:

 Limitations due to the EPA method’s
inconsistent use of mixed mode arithmetic.

 The FSPARSE method was more precise
by many orders of magnitude.

 The blocking of cells into groups required in
the BLOCK method, before invoking the
CCTM, means that the convergence
criterion uses an average error over all
cells in a block.

 The CELL method applies the convergence
criterion to each individual cell and thereby
offers more precision in the final solution.

7. CONCLUSIONS

This report has described an analysis of
CMAQ 4.7.1 behavior in the standard U.S. EPA
release and a new thread parallel version of
CMAQ for the GEAR ODE solver.

Speed up with an increasing number of
parallel threads reaches the range 1.5-1.7 over the
standard CMAQ release. However, numerical
precision issues were observed and are due in
part to the way arithmetic precision is treated in
the U.S. EPA version. The precision of the GEAR-
HC version in the transit over individual cells of the
grid offers superior precision compared to the
blocking method previously used.

Further opportunities remain for thread
parallelism in other parts of the CMAQ model
outside of the solver and work in this direction
continues at HiPERiSM Consulting, LLC. The new
(second) version of GEAR-HC offers layers of
parallelism not available in the standard U.S. EPA
release and is portable across hardware and
compilers that support thread parallelism.

REFERENCES

CMAQ, U.S. EPA, Office or Research and
Development, National Exposure Research Laboratory,
Atmospheric Modeling Division, http://
http://www.epa.gov/amad/, and Community Modeling
and Analysis System, http://www.cmascenter.org/cmaq/

Cray, http://www.cray.com/About/History.aspx,
http://en.wikipedia.org/wiki/Vector_processor.

Delic, G., 2013: contribution to 12th Annual CMAS
Conference, Chapel Hill, NC, October 28-30, 2013,
https://www.cmascenter.org/conference/2013/agenda.cf
m)

Delic, G., 2014: presented at the 8th International
Workshop on Parallel Matrix Algorithms and
Applications (PMAA14), July 2-4, Università della
Svizzera italiana // Lugano, Switzerland , submitted to
Parallel Computing. (http://pmaa14.ics.usi.ch/)

GMI, http://gmi.gsfc.nasa.gov/

INTEL: Intel Corporation, http://www.intel.com

Jacobson, M. and Turco, R.P., (1994), Atmos. Environ.
28, 273-284

PGI: The Portland Group http://www.pgroup.com

Young, J. O. and Delic, G., 2008: contribution to 7th
Annual CMAS Conference, Chapel Hill, NC, October 6-
8, 2008,
https://www.cmascenter.org/conference/2008/agenda.cf
m.

http://www.epa.gov/amad/
http://www.cmascenter.org/cmaq/
http://www.cray.com/About/History.aspx
http://en.wikipedia.org/wiki/Vector_processor
https://www.cmascenter.org/conference/2013/agenda.cfm
https://www.cmascenter.org/conference/2013/agenda.cfm
http://pmaa14.ics.usi.ch/
http://gmi.gsfc.nasa.gov/
http://www.intel.com/
http://www.pgroup.com/
https://www.cmascenter.org/conference/2008/agenda.cfm
https://www.cmascenter.org/conference/2008/agenda.cfm

