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1. INTRODUCTION 
 
When discussing topics such as energy, 

climate, and pollutant transport from regional to 
global scales, it is appropriate to also review some 
algorithms common to both the Community Multi-
scale Air Quality Model (CMAQ) and the Global 
Modeling Initiative (GMI) chemistry and transport 
model (CTM), as respectively developed (or 
supported) by the U.S. EPA and NASA. Some 
motivations of new strategies for improvement in 
these models include issues such as increasing 
model complexity, changes in computer 
architectures, and developments in compiler 
technology. 

To describe production and loss of chemical 
species in reaction mechanisms, both CMAQ and 
GMI allow a choice of various gas-phase solvers 
that implement different algorithms for integration 
of a sparse stiff system of ordinary differential 
equations. One such solver is the Gear algorithm 
and its use is common to both CMAQ and GMI. 
The implementation of this solver in both models is 
based on the work of Jacobson and Turco (1994) 
for the JSPARSE method. 

The HiPERiSM version replaces the legacy 
sparse matrix methodology of Jacobson and Turco 
by a more modern one (FSPARSE) described by 
Delic (2014). This work reports another variant of 
the FSPARSE method with a memory model 
better suited to the commodity architectures now 
in use. 
 

2. TEST BED ENVIRONMENT 
 

2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
Table 2.1. Each of the two platforms, Intel and 
AMD, has a total of 8 and 48 cores, respectively. 
This cluster is used for either MPI only, or hybrid 
thread-parallel OpenMP plus MPI execution. 

 
 

                                                      
* Corresponding author: George Delic, 

george@hiperism.com. 

2.2 Compilers 
 

This report implemented the Portland Group® 
(PGI) compiler (release 13.4) for CMAQ 4.7.1 on 
64-bit Linux operating systems and hardware from 
the Intel Corporation (INTEL) and Advanced Micro 
Devices (AMD) shown in Table 2.1. 
 

2.3 Episode studied 
 

For all CMAQ 4.7.1 results reported here the 
model episode selected was for August 09, 2006, 
using data provided by the U.S. EPA. This episode 
has the CB05 mechanism with Chlorine 
extensions and the Aero 4 version for PM 
modeling. The episode was run for a full 24 hour 
scenario on a 279 X 240 Eastern US domain at 12 
Km grid spacing and 34 vertical layers for a total of 
2.3 million grid cells. 
 
Table 2.1. Platforms at HiPERiSM Consulting, LLC 

Platform  AMD  INTEL 

Processor 
AMD™ Opteron 

6176SE 
Intel™ IA32 

W5590 

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3 

Power consumption 105 Watts 130 Watts 

Cores per processor 12 4 

Power consumption per core 8.75 Watts 32.5 Watts 

Processor count 4 2 

Total core count 48 8 

Clock 2.3GHz 3.33GHz 

Band-width 42.7 GB/sec 64.0 GB/sec 

Bus speed 1333 MHz  1333 MHz 

L1 cache 64KB 64KB 

L2 cache 512 KB(1) 256MB 

L3 cache(2) 12MB 8MB 

Total memory 128GB 96GB 

(1) Per core, (2) Per socket 

 
 

3. CMAQ AND GMI MEMORY MODEL  
 

3.1 Background 
 

The chemistry-transport model in CMAQ 
(CCTM) and GMI in CTM allow a choice of various 
gas-phase solvers that implement different 
algorithms for integration of a stiff system of 
ordinary differential equations (ODE), with sparse 
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Jacobians, to describe production and loss of 
chemical species in reaction mechanisms. When 
the Gear algorithm is used for the system of 
ODE’s it accounts for over 50% of the wall clock 
time of a simulation in CMAQ. 

The modifications introduced in JSPARSE 
took advantage of vector processing on the 
pipelined vector architectures of Cray computers 
(Cray). However, on Cray computers, the cost was 
prohibitive if the Gear method is applied to each 
cell of a multidimensional grid. Therefore one 
modification introduced in JSPARSE was to apply 
the Gear algorithm to a block of grid cells 
simultaneously. This modification allowed vector 
instructions to be applied to innermost loops over 
the block dimension length, NUMCELLS, equal to 
the size of the block (BLKSIZE). This method has 
the disadvantage that it requires a memory copy of 
concentrations from an array dimensioned by 
column, row, and level, into a one-dimensional 
array indexed by cell count using indirect 
addressing. Nevertheless, this blocking method 
worked well on Cray architectures (Cray) with 128 
word vector registers and hardware gather-scatter 
operations using a BLKSIZE ~500 grid cells. But 
this legacy method relies on hardware features of 
a 20 year old architecture that are no longer 
available in current commodity CPUs. Thus this 
choice has a memory copy penalty on commodity 
CPUs where a BLKSIZE larger than approximately 
64 leads to increased computational time (Delic, 
2013). Another disadvantage of choosing larger 
values of BLKSIZE is that the Gear solver time 
step size is the same for all cells in a block, and 
cells with faster rates of species concentration 
change may not converge as well as those cells 
with slower concentration rate changes (i.e. cells 
differ in “stiffness”). To ameliorate the negative 
consequences of disparate cell stiffness, the 
algorithm in JSPARSE offers an option to order all 
cells in the grid into blocks of cells having similar 
stiffness, with each block having a length of 
NUMCELLS. However, on commodity CPUs, the 
blocking technique used in JSPARSE leads to 
excessive data translation look-aside buffer (TLB) 
cache misses that inevitably stalls the CPU 
(Young and Delic, 2008). This indicator suggests 
that memory latency is expanded as the CPU 
waits for data address translation and fetch from 
higher up the memory hierarchy. The cause is a 
memory model that persistently maps from a 
regular grid of cells populating a global array 
dimensioned by column, row, and level (or layer), 
to a single linear array on each call to the Gear 
solver. Each block of cells in the linear array is 

then passed to the CCTM for the chemistry time 
step integration. 
 

3.2 Performance profile of CMAQ 
 

Table 6 lists time expended by each the 
physical processes (in SCIPROC) in the standard 
release of CMAQ for the 24 hour episode 
described in Section 2.3, with serial execution for 
one MPI process (NP=1), using the Portland 
compiler on the Intel node. The last column gives 
the fraction of the total runtime used by the 
respective processes and it is clear that CCTM 
dominates. Therefore an improvement in the 
CHEM subroutine will significantly impact the total 
wall clock time. 
 
Table 3.1. CMAQ science processes and wall clock 
times for a one-day simulation. 

Process and 
function 

Subroutine 
name 

Wall 
clock 
time 
(hours) 

Fraction 
of total 
(percent) 

Asymmetric 
convective model 
(ACM) for vertical 
diffusion 

VDIFF 5.30 13.7 

Couple 
concentration values 
for transport 

COUPLE 0.13 0.33 

Advection in the 
horizontal plane 

HADV 2.00 5.15 

Advection in the 
vertical (Z) direction 

ZADV 0.81 2.09 

Horizontal diffusion HDIFF 0.17 0.45 

Decouple 
concentration values 
for transport 

DECOUPLE 0.19 0.49 

ACM and resolved 
cloud processes 

CLDPROC 0.74 1.92 

CCTM CHEM 23.34 60.1 

Aerosol species 
processing 

AERO 6.13 15.8 

 

For the same 24 hour episode Fig. 3.1 shows 
a runtime profile of the fraction of wall clock time 
for three of the most time consuming physical 
processes in CMAQ: CHEM, AERO, and VDIFF. 
The balance between these three shifts depending 
on the simulation hour, but CHEM always 
dominates 

 

3.3 Improvements in the memory model 
 

HiPERiSM’s improvements for the 
Rosenbrock solver (Delic, 2013) have been 
applied to the Gear ODE algorithm. A previous 
report by Delic (2014) describes (for the Gear 
ODE algorithm) how the sparse solver 
(FSPARSE) replaces the legacy JSPARSE sparse 
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solver method, but still retains the blocking method 
and stiffness ordering described in Section 3.1.  
 

 
 
Fig 3.1. This shows the fraction of total wall clock time 
for selected processes in SCIPROC for all 12 x 24 calls 
in a 24-hour simulation of the U.S. EPA standard code 
with 1 MPI process using the Portland compiler on the 
Intel node. Only CHEM, AERO, and VDIFF are shown 
here, together with the sum (SUM) of the last two. 
 

This report describes an alternative approach 
that improves the memory model in GEAR-HC. 
This alternative dispenses with copying blocks of 
cells into a linear array and with the stiffness 
ordering of blocks of cells. The FSPARSE method 
integrates the new solver into the transit over the 
regular grid domain ordered by column, row, and 
level. Therefore in this version of CMAQ the 
CCTM is called for each individual cell in the grid. 
This is achieved in a thread parallel region over a 
grid column index: 
 
C$OMP DO SCHEDULE (DYNAMIC,MY_CHUNK) 

      blk_col: DO COL = 1, MY_NCOLS 

        blk_row: DO ROW = 1, MY_NROWS 

          blk_lev: DO LEV = 1, NLAYS 

       ……… 

          END DO blk_lev 

        END DO blk_row 

      END DO blk_col 

 

In this cell-centric version, each thread ranges 
over all rows and levels for a selected column. 
This has two benefits (a) no stiffness ordering of 
cells is required as the gear solver is applied to 
each cell individually, and (b) the memory model is 
improved because a redundant memory copy is 
removed. To distinguish results of the two versions 
of GEAR-HC the following discussion will 
designate the block cell version as BLOCK, and 
the individual grid cell version as CELL. 

 

 
 
Fig 3.2. This shows the CHEM wall clock time for 
GEAR-EPA and GEAR-HC (in the CELL version) with 2 
to 8 threads. 
 

 
 
Fig 3.3. This shows the speed up in CHEM of GEAR-HC 
(in the CELL version) versus the GEAR-EPA, with 2 to 8 
threads. 
 

In this section, and the next, two performance 
metrics are introduced to assess thread parallel 
performance in the GEAR-HC modified code: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA runtime, 

(b) Scaling is the gain in runtime with thread 
counts larger than 1, relative to the result 
for a single thread. 

For the performance of CHEM in the 12 x 24 
calls of the 24 hour simulation two more results 
are presented for the case of 1 MPI process using 
the Portland compiler on the Intel node. Fig. 3.2 
shows the wall clock time for calls to CHEM in the 
standard EPA version (GEAR-EPA) and the CELL 
version of GEAR-HC with increments of OpenMP 
threads from 2 to 8. Except for the 2 thread case, 
the wall clock time is greatly reduced in all 12 x 24 
calls.  
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To show the parallel performance more 
clearly, Fig. 3.3 shows the speed up for calls to 
CHEM by GEAR-HC (in the CELL version) versus 
the GEAR-EPA, with 2 to 8 threads. This speed up 
varies from 2.5 to 5 with 8 threads, and increments 
substantially from 6 to 8 threads. 
 

4. PERFORMANCE OF GEAR-HC 
 

4.1 Speedup and scaling for 1 MPI process 
 

For the CMAQ chemistry solver, in the BLOCK 
version, the grid of 2.3 million grid cells is 
partitioned into blocks of size BLKSIZE and these 
blocks are distributed to threads in a thread team 
in GEAR-HC. In the standard U.S. EPA 
distribution BLKSIZE=50 is fixed, but in the 
BLOCK version of GEAR-HC BLKSIZE= 48. As 
described in Section 3.3, in the CELL version of 
GEAR-HC, no blocking of cells is used. Instead 
the Gear solver is applied to each cell in the grid 
domain. Table 4.1 shows the wall clock time (in 
hours) for the BLOCK and CELL versions of 
GEAR-HC. Also shown are the times for the 
standard U.S. EPA version. Values are shown for 
selected cases of the MPI process count (NP). 
Speedup and scaling metrics are calculated from 
the values of Table 4.1. 
 
Table 4.1. Wall clock times (in hours) for the U.S. EPA 
(GEAR-EPA) and GEAR-HC in BLOCK and CELL 
versions of CMAQ on the AMD platform for the Portland 
compiler. 

MPI 
processes 

(NP) 
G

E
A

R
-H

C
 

G
E

A
R

-E
P

A
 

GEAR-HC 

Time in hours by thread count 

1 2 4 6 8 

1 B
L
O

C
K

 

83.3 39.7 28.4 22.9 49.1 46.8 

2 42.3    25.1 23.1 

4 22.5    13.6 12.9 

8 11.6    7.8  

1 C
E

L
L

 

83.3 136.9 84.5 59.3 51.3 46.3 

2 42.3    26.4 23.7 

4 22.5    14.4 13.3 

8 11.6    7.9  

 
For the NP=1 case Fig. 4.1 shows the wall 

clock time for EPA and the two GEAR-HC 
versions of CMAQ for the 24 hour simulation. With 
a single OpenMP thread the CELL version uses 
more time because there are no vector loops over 
the number of cells in a block of cells. However, as 
is evident, the gain in performance with increasing 
thread count eliminates the discrepancy between 
BLOCK and CELL version with 6 or more threads. 

Fig. 4.2 shows the speedup of GEAR-HC over 
GEAR-EPA corresponding to the values of Fig. 
4.1. With 6 or 8 threads speedup is similar for 
either BLOCK or CELL versions. Fig. 4.3 shows 
the results for thread scaling on a very refined 
vertical scale. The apparent greater scaling for the 
CELL version of GEAR-HC is the consequence of 
the longer runtime with a single thread. 
 
 

 
 
Fig 4.1. Wall clock time (hours) of GEAR-EPA (EPA) 
and GEAR-HC for CMAQ 4.7.1 with a single MPI 
process (NP=1). For OpenMP thread counts from 1 to 8 
the block (BLOCK) and cell (CELL) versions of GEAR-

HC are compared.  
 

 
 
Fig 4.2. Speed up of GEAR-HC for CMAQ 4.7.1 over 
the serial GEAR-EPA version with a single MPI process 
(NP=1). For OpenMP thread counts from 1 to 8 the 
block (BLOCK) and cell (CELL) versions of GEAR-HC 
are compared. 
 

4.2 Speedup and scaling for MPI process 
counts more than 1 
 

For the NP=1 to 8 cases of Table 4.1, Fig. 4.4 
shows the wall clock time for EPA and the two 
GEAR-HC versions of CMAQ, for the 24 hour 
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simulation. With 6 or 8 OpenMP threads the 
BLOCK and CELL versions have similar results. 
However the gain in performance with increasing 
thread count diminishes because the grid domain 
size for each MPI process shrinks as NP 
increases. This reduces the number of cells 
available to the thread team. This is confirmed in 
the speedup results shown in Fig. 4.5, where 
speedup results decline as the NP count 
increases. Nevertheless, speedup is in the range 
1.5 to 1.7 when NP is greater than 2. 

 
 

 

 
Fig 4.3. Scaling of GEAR-HC with 2 to 8 threads for 
CMAQ 4.7.1 over the single thread result for one  MPI 
process (NP=1). At each thread count the block 
(BLOCK) and cell (CELL) versions of GEAR-HC are 
compared. 
 

 
 
Fig 4.4. Wall clock time (hours) of GEAR-EPA (EPA) 
and GEAR-HC for CMAQ 4.7.1 with four different 
choices of the number of MPI processes (NP). This 
compares the block (BLOCK) and cell (CELL) version of 
GEAR-HC with the same OpenMP thread count (6 or 8). 

 

 
 
Fig 4.5 Speed up of GEAR-HC for CMAQ4.7.1 over the 
serial GEAR-EPA version with four different choices of 
the number of MPI processes (NP). For the same 
OpenMP thread count (6 or 8) the block (BLOCK) and 
cell (CELL) version of GEAR-HC are compared. 
 

5. NUMERICAL ANALYSIS 
 

5.1 Precision control in CCTM 
 

The two GEAR-HC sparse methods, BLOCK 
and CELL, solve the same sparse system, but 
differ in the number of chemistry time steps 
required to solution. Convergence is controlled in 
both methods by accuracy parameters ATOL and 
RTOL. Inspection of the convergence pattern 
shows that GEAR-EPA repeatedly exceeds the 
upper time step bound and terminates earlier. This 
is the result of less accuracy in GEAR-EPA 
because of numerical precision issues. The 
consequences for precision in species 
concentrations have been explored in detail 
elsewhere (Delic, 2013, 2014). 

The CCTM solver uses double precision 
arithmetic but accepts some input data from single 
precision variables (temperature, pressure, 
photolysis rates, reaction rates, etc.). The U.S. 
EPA code implements mixed mode arithmetic and 
is not consistent in promoting constants or 
variables from single to double precision 
arithmetic. This is particularly egregious in the 
CALCKS procedure where thermal and photolytic 
reaction rates are computed using single precision 
arithmetic. Therefore using an ATOL=1.E-09 is 
moot for the JSPARSE method in the GEAR-EPA 
version. 

In the GEAR-HC FSPARSE algorithm 
arithmetic consistency has been implemented 
throughout the chemistry solver and because of 
the higher accuracy, a reduced ATOL value is 
tolerated. This reduces the number of chemistry 
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time step iterations in GEAR-HC and therefore 
ATOL=1.E-07 is the default used in GEAR-HC. 
Due to the higher precision in the convergence 
criterion when it is applied in the Gear ODE solver 
in the CELL version of GEAR-HC, no sacrifice in 
accuracy of chemical species concentration is 
expected. 
 

6. LESSONS LEARNED 
 

6.1 Benefits of the FSPARSE method 
 

Comparing runtime performance for CMAQ 
4.7.1 in the new OpenMP parallel version with the 
U.S. EPA release showed benefits such as: 

 A speedup ~1.5 with 8 parallel threads and 
NP=8.  

 A speedup ~1.7 with 6 parallel threads and 
NP=4. 

 

6.2 Numerical precision issues 
 

A comparison of numerical precision for CMAQ 
4.7.1 in the new OpenMP parallel version with the 
U.S. EPA release suggest: 

 Limitations due to the EPA method’s 
inconsistent use of mixed mode arithmetic. 

 The FSPARSE method was more precise 
by many orders of magnitude. 

 The blocking of cells into groups required in 
the BLOCK method, before invoking the 
CCTM, means that the convergence 
criterion uses an average error over all 
cells in a block. 

 The CELL method applies the convergence 
criterion to each individual cell and thereby 
offers more precision in the final solution. 

 
 

7. CONCLUSIONS 
 

This report has described an analysis of 
CMAQ 4.7.1 behavior in the standard U.S. EPA 
release and a new thread parallel version of 
CMAQ for the GEAR ODE solver. 

Speed up with an increasing number of 
parallel threads reaches the range 1.5-1.7 over the 
standard CMAQ release. However, numerical 
precision issues were observed and are due in 
part to the way arithmetic precision is treated in 
the U.S. EPA version. The precision of the GEAR-
HC version in the transit over individual cells of the 
grid offers superior precision compared to the 
blocking method previously used.   

Further opportunities remain for thread 
parallelism in other parts of the CMAQ model 
outside of the solver and work in this direction 
continues at HiPERiSM Consulting, LLC. The new 
(second) version of GEAR-HC offers layers of 
parallelism not available in the standard U.S. EPA 
release and is portable across hardware and 
compilers that support thread parallelism. 
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