
2.1
PORTING AIR QUALITY MODELS TO NEXT GENERATION COMMODITY

PLATFORMS

George Delic *
HiPERiSM Consulting, LLC, Durham, NC

e-mail: george@hiperism.com
Web address: http://www.hiperism.com

Voice (919) 484-9803 Fax (919) 806-2813

1.0 INTRODUCTION

This report to the Air Quality Modeling (AQM)
community has two goals (a) review the
consequences to Air Quality Modeling of the
revolution in commodity hardware technology, and
(b) evaluate the latest releases of fortran 90/95
compilers Linux™ on commodity platforms with
AERMOD [1] and CAMx [2] benchmarks.

2.0 HARDWARE REVOLUTION

The next revolution in commodity hardware
has arrived and those who learn to ride the wave
of this revolution will become the performance
leaders on commodity hardware. Virtually all the
major hardware vendors now offer CPU’s with
dual core technology and it is anticipated that by
the end of 2006 quad core CPUs will be
announced. By 2010 it is expected that there will
be more than 100 cores per CPU. The
consequences for AQMs will be an order of
magnitude loss in performance when executed on
such processors if they remain the predominantly
scalar performers that they are at this time. These
developments place pressure on software
developers in AQMs to seek conversion to
appropriate parallel computing models.
Furthermore, clusters now represent one half of
the technical computing market, with a rapid
decline in shipment of 32-bit platforms and a
corresponding wider acceptance of 64-bit
commodity hardware. Also, some 73% of high-end
computing platforms use Linux as the OS of
choice. These revolutionary changes motivate
HiPERiSM Consulting, LLC’s initiative to (a)
measure hardware performance of AQMs,

* Corresponding author address: George Delic,

HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill,
NC 27514-0569

(b) initiate work on serial-to-parallel conversion of
serial AQMs, and (c) explore the consequences of
new software support of parallel computing.

3.0 SOFTWARE EVOLUTION

Three compilers commonly in use for AQMs
have each had a major release within the last
year. These are Absoft (10.0), Intel (9.1), and The
Portland Group, STMicroelectronics (6.1).
HiPERiSM Consulting, LLC’s evaluation of these
new releases with AQMs showed some interesting
progress in performance and therefore it was
decided to include some new results and compare
them with those presented in previous years.

4.0 BENCHMARKS

The hardware used for the results reported
here is the Intel Pentium 4 Xeon (P4) and Pentium
Xeon 64EMT (P4e) processors. These have
processor clock rates of 3GHz and 3.4GHz,
respectively. Each is in a dual configuration with a
corresponding front side bus (FSB) of 533MHz
and 800HMz shared by each pair of processors.
The operating system (OS) is HiPERiSM
Consulting, LLC’s modification of the Linux™ 2.6.9
kernel to include a patch that enables access to
hardware performance counters. However, in this
report no performance data (other than runtime)
will be discussed, as results have been presented
elsewhere (cf. Delic in [3,4]). To conserve space
the choice of compiler switches is not listed here
and full details on them may be found at the
technical reports pages of the HiPERiSM
Consulting, LLC, URL [5].

The choice of benchmarks includes AERMOD
04300 and CAMx 4.03. For the latter we use a
prior release because results with the earlier
compiler releases were available for comparison
against the present (newer) compiler releases.
Furthermore, it has been our experience with later

http://www.hiperism.com/

releases of CAMx that performance of the
compute kernels continues to be similar. A
benchmark with CMAQ [6] awaits the availability of
release 4.6 in Q4CY006.

4.1 AERMOD 04300

AERMOD version 04300 was provided by the
U.S. EPA. Two data sets are used in this
benchmark. The first (EPA-E2) was provided by
the U.S. EPA, and the second (ENV-T1) was
provided by an environmental consulting
company. Fig. 1 shows the comparison of three
compilers on the P4 and P4e platforms for the
ENV-T1 case. Fig. 2 shows a comparison of the
previous and current release of each compiler on
the P4e platform for the EPA-E2 case. With the
exception of the Absoft compiler the new release
of each compiler does show an improved
performance. The current performance leader for
AERMOD is the Intel v9.1 compiler on both
platforms.

ENV-T1 AERMOD 04300 times on Intel processors

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

INT32-f90-

9.0-opt

INT32-f90-

10.0-best

INT32-pgf90-

6.0-best

INT32-ifort-

9.1-ipo

INT64-f90-

9.0-sse

INT64-f90-

10.0-best

INT64-pgf90-

6.1-best

INT64-ifort-

9.1-ipo

Platform, compiler, and switch mnemonic: pgf90=Portland, f90=Absoft,

ifort=Intel

W
a

ll
 c

lo
c

k
 (

s
e

c
o

n
d

s
)

< ------ x86_32 x86_64 --- >

ifort

INT32: Intel Pentium 4 Xeon

INT64: Intel Pentium 4 Xeon, 64EMT

ifort: Intel

ifort

Fig. 1 Run time for AERMOD benchmark ENV-T1
with three compilers on two platforms. The 32 bit
(P4) platform results are shown on the left and
those for the 64 bit platform (P4e) on the right. The
switch mnemonics are defined in a Technical
Report (in HCTR2006_1 at [5]) where the
corresponding compiler switches are listed. The
best time reported in this group is for the Intel v9.1
compiler on the P4e platform.

4.2 CAMx

The CAMx code developed by ENVIRON
(http://www.camx.com) is a Fortran 77 code for an
Eulerian photochemical model that is widely used
in the AQM community. The benchmark results
reported here were for one day (08/22) of the 2000
episode in the Greater Metro area with the
base5a.regular.GOES base case for 2000 using

the reported non-equilibrium emissions and the
GEOS-satellite correct meteorology. Modeling files

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

1100.0

1200.0

INT64-

f90-9.0-

sse

INT64-

f90-

10.0-

best

INT64-

pgf90-

6.0-best

INT64-

pgf90-

6.1-best

INT64-

ifort-9.0-

ipo

INT64-

ifort-9.1-

ipo

Compiler

Ti
m

e
(s

ec
on

ds
)

Fig. 2 Run time for AERMOD benchmark EPA-E2
with three compilers on the P4e platform. This
figure compares performance of the compilers with
results of the latest releases and previous release,
in each case. The switch mnemonics are defined
in a Technical Report (in HCTR2006_1 at [5])
where the corresponding compiler switches are
listed. The best time reported in this group is for
the Intel v9.1 compiler.

are obtainable from the TCEQ site at
http://www.tnrcc.state.tx.us/air/aqp/

airquality_photomod.html#section4>

http://www.tnrcc.state.tx.us/air/aqp/

airquality_photomod.html#camx>

Fig. 3 shows runtime results with some
missing values. Some observations are in order
for the missing cases. The Absoft v10.0 compiler
benchmark is in progress at this time and will
appear at a later date. The Intel ifort v9.1 result
for the P4e platform is missing because the
compiler fails with an “Internal error” warning. A
bug report has been posted with the Intel support
site. An update of the results for Fig. 3 will be
posted in a Technical Report (in HCTR2006_2 at
[5]).

4.3 Analysis of Benchmark Results

The performance analysis of these
benchmarks, shows several important features of
current compiler technology for commodity
hardware. For AERMOD and CAMx benchmarks

http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#section4
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#section4
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#camx
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#camx

 performance results with three compilers
show as much as 77% variability
(depending on the platform).

 very significant changes in performance
occur between even minor releases of a
specific compiler: by as much as 22%-
26% (with some exceptions).

 Performance on 64-bit platforms is
superior to that on 32-bit platforms:
ranging from 7% (Intel) to 87% (Absoft)
improvement in runtime (for AERMOD,
and less so for CAMx).

It is clear that compilers for commodity
platforms have undergone a rapid maturation
process in less than two years and continue to
exchange leadership in performance as new
releases arrive.

20000806 CAMx times on Intel processors

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

20000.00

22000.00

24000.00

INT32-

f90-9.0

INT32-

f90-10.0

INT32-

pgf90-6.0

INT32-

ifort-9.0

INT32-

ifort-9.1

INT64-

f90-9.0

INT64-

f90-10.0

INT64-

pgf90-6.0

INT64-

pgf90-6.1

INT64-

ifort-9.0

INT64-

ifort-9.1

Platform, compiler, and switch mnemonic: pgf90=Portland, f90=Absoft,

ifort=Intel

W
a

ll
 c

lo
c

k
 (

s
e

c
o

n
d

s
)

< ------ x86_32 x86_64 --- >

ifort

INT32: Intel Pentium 4 Xeon

INT64: Intel Pentium 4 Xeon, 64EMT
ifort: Intel

ifort

Fig. 3 Run time for CAMX benchmark 20000806
with three compilers on two platforms. The 32 bit
(P4) platform results are shown on the left and
those for the 64 bit platform (P4e) on the right. The
compiler switches used are defined in a Technical
Report (in HCTR2006_2 at [5]). The best time
reported in this group is for the Intel v9.0 compiler
on the P4 platform.

5.0 TRACKING THE REVOLUTION

In the following sections the revolution in
commodity computing is reviewed.

5.1 Trends in hardware

Two important recent developments in
commodity hardware have important
consequences for software development with
commodity clusters. The first of these is the
proliferation (and rapid acceptance) of processor

hardware that supports 64-bit memory addressing.
Examples include processors such as the Intel
Pentium Xeon 64EMT [7], American Micro
Devices (AMD) Opteron [8], and IBM’s Power PC
G5 [9]. Each of these architectures supports 64-bit
Linux kernels, and also Apple Mac OSX 10.4 (in
the case of the G5). In this discussion we say little
about the Itanium processor because we know of
only two customers who use it. The second recent
development is the availability of multi-core
processors. At this time (2006) these are dual core
CPU's with separate GPR's, functional units and
cache hardware. Dual core processors are already
in the market place and examples of third party
vendors offering such solutions with AMD dual
core processors are Microway [10], HPC Systems
[11] and SUN Microsystems [12]. It is anticipated
that developments in multi-core processors will be
rapid in the next few years and by 2010 the
number of cores per processor is expected to
exceed 100 (cf. Jack Dongarra in [4]).

Intel [7] has announced a technology roadmap
of processor fabrication with feature resolution
ranging down from 90nm (in 2003) to 22nm (in
2011). This represents an increase in density from
the current (2005) to a future (2011) of
approximately (65/22)^2 = 8.7, or nearly an order
of magnitude. Intel quad core CPU's will become
available in 2007. Furthermore, for the first time
since the late 1990's Intel has designed two new
motherboards to target technical computing.

5.2 Trends in software

As in the past, the two dominant parallel
programming paradigms are MPI [13] and
OpenMP [14] so our emphasis will be on these
and products that support them. The arrival of
multi-core CPUs is coincident with the availability
of large memory capacity so we anticipate a
resurgence of interest in software development for
large memory models within a Shared Memory
Parallel (SMP) programming paradigm such as
OpenMP. The OpenMP application program
interface (API) is now at the 2.5 standard [14] and
discussions are underway on what features should
be included in the 3.0 standard. The OpenMP
model is supported by all major compilers and has
been endorsed by key applications developers. It
has a bright future in riding the wave of the multi-
core revolution especially since OpenMP debug
tools such as Intel’s Threadchecker™ [7] are
available to developers in helping them detect
memory leaks.

5.3 Performance and code structure

Effective and efficient parallel processing
depends on a combination of several key factors:

 Efficient serial performance
 Achieving good vector/parallel scalability
 Macroperformance, or gross behavior of

the computer-application combination
 Microperformance, or the underlying

factors responsible for the observed
macroperformance

 Usability, or program development
environment.

The above is what we said seven years ago
and the story has not changed. What makes the
search for effective parallel processing on
commodity processor clusters particularly
challenging is how (and with what frequency)
technology changes.

Before parallel performance
(Macroperformance) is evaluated the serial
performance (Microperformance) of an application
needs to be optimized. By serial performance we
mean the on-core execution efficiency of the code.
For example, code that does not take advantage
on the extended SSE instruction set, or otherwise
experiences serial performance bottle-necks,
should not be executed in parallel mode before
serial performance is optimized. Achievable serial
execution efficiency will depend on several factors
that change with time: memory architecture, FSB
rates, CPU architecture (e.g. number of stages in
the pipeline), scope of hardware resources (e.g.
number of GPR's, size of the TLB cache, etc), and
the instruction set that comes with each new
hardware generation. Performance of applications
can be precisely measured from hardware
counters available on commodity processors at
the user level.

Defining good versus poor performance (cf.
Delic in [15]) depends on the criteria applied. The
basic performance categories that need to be
examined are:

 floating point operations
 integer and logical operations
 memory operations
 I/O operations

Specific metrics need to be defined and
examined in each category. HiPERiSM uses
multiple metrics that show either rates (i.e. number
per unit time), or ratios (ratio of operations or
instructions of different categories).

For optimal performance code must be
structured to present compilers with ample
opportunity to engage SSE instructions and
overlap with memory (or I/O) operations. This
means applying the usual practices for vector
code construction:

 Introducing DO loop code blocks that
compilers can easily identify as potentially
vectorizable

 Removing any I/O from potential vector
code blocks

 Removing any vector inhibitors from
potential vector code blocks

 Simplifying the calling tree within potential
vector code blocks

 Eliminating or simplifying conditional
segments within potential vector code
blocks

There is nothing new in these basic practices
for constructing vector code - they are the same
that applied when serial code was ported to Cray
vector architectures. They are also the appropriate
rules for constructing code with good parallel
potential, e.g. applying task parallelism to the DO
loop code block.

5.4 Problems on commodity solutions

The fundamental problem with commodity
hardware solutions is the performance cost of
accessing memory (cf. Delic in [3,4]). Processor
performance has improved by leaps-and-bounds
in the last decade or so, whereas memory latency
has not improved on a corresponding scale [16].
As a consequence, the challenge of optimizing the
balance between memory operations and
arithmetic operations is crucial because
commodity architectures compromise on memory
bandwidth and latency to reduce costs.

Applications with a voluminous rate of total
memory instructions need to be examined
carefully. A high rate of memory instruction issue
need not be an indicator of a performance
bottleneck. Benchmarks with good vector
character that deliver of the order of 1Gflop on a

Pentium 4 Xeon can also show high memory
access rates. But if an application has low vector
instruction rates and voluminous memory access
rates (as do AERMOD and CAMx), performance is
constricted on commodity architectures where
memory bandwidth is limited by the FSB and
cache design.

5.5 Riding the wave of the revolution

With the advent of multi-core CPUs, for
models that already use MPI, exploration of hybrid
MPI and SMP levels of parallelism could be
beneficial for performance scaling. Hybrid parallel
computing models have been explored in the past,
but their utility with dual processor commodity
environments has been limited. Within the next
year we will see the possibility of SMP models with
8 (or more) threads per node applied to real world
models. This means that in a hybrid parallel model
there will be a need to measure parallel scalability
as a function of the number of MPI processes
versus the number of OpenMP threads. For
AQMs the performance consequences of multi-
core hardware architectures are not known at this
time and will need to be studied in detail. Such
studies will be necessary on each new platform
because (a) the memory latency and interconnect
fabric will be different in each case, and (b)
different compilers will give different performance
results.

6.0 CONCLUSIONS

This performance analysis of AERMOD and
CAMx shows that compilers must be tested with
each new release because performance
differences are very significant (even between
minor releases). Furthermore, it can no longer be
assumed that one single compiler will provide
superior performance indefinitely. In fact, even
within the space of a year, dominance in
performance can change between different
compilers. However, one note of warning needs to
be sounded: even though a new release of a
compiler can give dramatically improved
performance in one application is may not do so in
another. These rapid developments in compiler
releases mean also that comparisons between
compilers can show a "leap-frog" effect as new
releases arrive asynchronously from vendors.
Thus, active users of commodity compiler
products are well advised to exercise new
compiler releases as they arrive with their favorite
benchmarks. Furthermore, since new (major)

compiler releases often come with compiler bugs,
the best advice to end-users is to apply at least
two different compilers to the same benchmark in
mission critical projects to validate numerical
accuracy.

Developments in hardware and software offer
the opportunity of orders of magnitude increases
in performance of AQMs. However, they also
require refined programming practices from cluster
users coupled with precise measurement of
performance metrics using hardware performance
counters. Model developers should plan for
transition of existing models to multi-core parallel
architectures and evaluate the software options
with respect to suitability to this task based on the
criteria of level-of-effort, usability, and scalability.
Such a plan should have as focal points:

 Level-of-effort: A assessment of the
typical cost of parallelizing serial
production code.

 Usability: The base of legacy serial code
requires simpler parallelization strategies
that do not require a complete rewrite of
the code as the first step.

 Scability: For multi-core architectures
message passing programming may either
be avoided entirely by use of OpenMP, or
in combination with it, in a hybrid mode.

Prototyping with easy-to-use parallelizing
compilers and OpenMP, provides input to a
decision making process on the serial-to-parallel
conversion strategy. HiPERiSM's experience with
OpenMP shows that the level of effort is some five
to ten times less than that in using MPI.
Furthermore the use of tools available for OpenMP
programmers may further reduce the level of
effort. For large applications hybrid parallel models
that use OpenMP and MPI in combination will
determine the potential for scalability with
clustered SMP nodes as the number of cores per
CPU scales upward.

Citations

[1] AERMOD is available at U.S. EPA, Technology
Transfer Network, Support Center for Regulatory
Air Models http://www.epa.gov/scram001/.
[2] CAMx was developed by ENVIRON Corp. and
is available at http://www.camx.com.
[3] 6th International Conference on Linux Clusters:
The HPC Revolution 2005, Chapel Hill, NC, April
26-28, 2005,

http://www.epa.gov/scram001/
http://www.camx.com/

http://www.linuxclustersinstitute.org/Linux-HPC-
Revolution/Archive/2005techpapers.html.
[4] 7th International Conference on Linux Clusters:
The HPC Revolution 2006, Norman, OK, May 2-4,
2006.http://www.linuxclustersinstitute.org/Linux-
HPC-Revolution/Archive/2006techpapers.html
[5] HiPERiSM Consulting, LLC,
http://www.hiperism.com.
[6] CMAQ was developed in the Atmospheric
Modeling Division (AMD) of the NOAA Air
Resources Laboratory (ARL) in collaboration with
the U.S. EPA’s National Exposure Research
Laboratory (NERL) and is distributed by CMAS at
http://www.cmascenter.org.
[7] Intel Corporation http://www.intel.com
[8] American Micro Devices http://www.amd.com
[9] IBM http://www.ibm.com
[10] Microway
http://www.microway.com/opteron.html
[11] High Performance Computing Systems
http://www.hpcsystems.com/servers.htm
[12] SUN Microsystems http://www.sun.com
[13] The Message Passing Interface (MPI)
standard, http://www.mcs.anl.gov/mpi/index.html.
[14]OpenMP http://www.openmp.org
[15] Commodity Cluster Symposium, Baltimore,
MD, July 26-27,
http://www.arl.hpc.mil/events/Clusters2006
[16] STREAM http://www.cs.virginia.edu/stream

http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/Archive/2005techpapers.html
http://www.hiperism.com/
http://www.cmascenter.org/
http://www.intel.com/
http://www.amd.com/
http://www.ibm.com/
http://www.microway.com/opteron.html
http://www.hpcsystems.com/servers.htm
http://www.sun.com/
http://www.mcs.anl.gov/mpi/index.html
http://www.openmp.org/
http://www.arl.hpc.mil/events/Clusters2006
http://www.cs.virginia.edu/stream

