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1. INTRODUCTION 
 
This is a progress report on a project to 

evaluate industry standard fortran 90/95 compilers 
for IA-32 Linux™ commodity platforms when 
applied to Air Quality Models (AQM). The goal is 
to determine the optimal performance and 
workload though-put achievable with commodity 
hardware for such models because they are in 
wide-spread use on these platforms. New results 
are presented for CAMx 4.03 that give insight into 
the algorithm’s performance on commodity 
architectures. Important performance bottle-necks 
are identified with the aid of proprietary software to 
collect and compute performance metrics using a 
publicly available hardware performance interface. 

 

2. CHOICE OF HARDWARE, OPERATING 
SYSTEM, AND COMPILERS 

 
The hardware used for the results reported 

here is the Intel Pentium 4 Xeon (P4) and Pentium 
Xeon 64EMT (P4emt) processors. These have 
processor clock rates of 3GHz and 3.4GHz, 
respectively. Each is in a dual configuration with a 
corresponding front side bus (FSB) of 533MHz 
and 800HMz shared by each pair of processors. 
The operating system (OS) is HiPERiSM 
Consulting, LLC’s modification of the Linux™ 2.6.9 
kernel to include a patch that enables access to 
hardware performance counters. This modification 
allows the use of the Performance Application 
Programming Interface (PAPI) performance event 
library (PAPI, 2005) to collect hardware 
performance counter values as the code executes. 
The compilers used were the Portland pgf90/95 
(release 6.0) and Intel ifort (release 9.0) for the 
three groups of optimization switches shown in 
Table 1. 

 These architectures offer Streaming Single-
Instruction-Multiple-Data Extensions, (SSE) to 
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enable vectorization of loops operating on multiple 
elements in a data set with a single operation. This 
is enabled through a compiler switch (sse in Table 
1) and has been used in these tests. 
 

 
TABLE 1. P4 compiler command and switches 

 

 
Compiler 

and 
platform 

 

Compiler 
optimization 

switches 

Switch 
group 

mnemonic 

 

 

pgf95 
(P4*) 
(P4emt**) 

–O0 
–O2 
–fast –Mvect=sse 

noopt 
opt 
sse 

   

Ifort  
(P4*) 
(P4emt**) 

-O0 -Ob0 -unroll0 
-O3 -Ob2 -prefetch- 
-xW -O3 -Ob0 -prefetch- 

noopt 
opt 
sse 

 

 
* Other P4 options include (a) for pgf95: –tp p7 -pc 64  
-Mdalign -Mextend -Mnoframe -Mlfs -byteswapio –Wl, 
-Bstatic, and (b) for ifort: -tpp7 -FI -convert big_endian 
 
** Other P4emt options include (a) for pgf95: -tp p7-64 
-mcmodel=medium -Mextend -Mnoframe –byteswapio, 
and (b) for ifort: -tpp7 -FI -convert big_endian 
-mcmodel=large -i_dynamic  
 

 

3. CHOICE OF BENCHMARKS 
 

The CAMx code developed by ENVIRON 
(ENVIRON) is a Fortran 77 code for an Eulerian 
photochemical model that is widely used in the 
AQM community. This benchmark analysis 
includes a selected case for the 2000 episode on 
8/22 in the Houston Greater Metro area, that is 
labeled as “base5a.regular” by the modeling team 
at the Texas Commission on Environmental 
Quality (TCEQ). Modeling files are obtainable from 
the TCEQ URL (TCEQ) 
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4. HARDWARE PERFORMANCE EVENTS 
 
The PAPI (PAPI, 2005) interface defines over 

a hundred hardware performance events, but not 
all of these events are available on all platforms. 
For the Intel hardware under discussion the 
number of hardware events that can be collected 
are, respectively, 28 (P4) and 25 (P4emt) and 
Table 2 only events that are common to them. Not 
all events can be collected in a single execution 
due to the fact that the number of hardware 
counters is small (typically four). Thus, multiple 
executions are needed to collect all available 
events on any given platform. The process time 
(PTIME) reported here is obtained from the 
hardware performance counter interface. 
 

 
TABLE 2. PAPI events common to the Intel P3, 

P4 and P4emt. 
 

 
Category Description Name 

 

 

Floating 
Point 
Operations 

Floating point 
instructions 
Floating point  
operations 
 

PAPI_FP_INS 
 
PAPI_FP_OPS 

Instruction 
Counting 

Total cycles 
Instructions issued 
Instructions 
completed 
Vector/SIMD 
instructions 

PAPI_TOT_CYC 
PAPI_TOT_IIS 
PAPI_TOT_INS 
 
PAPI_VEC_INS 

Data 
Access 

Cycles stalled on any 
resource 
 

PAPI_RES_STL 

Cache 
Access 

L1 data cache 
misses 
L1 load misses 
L1 instruction cache 
accesses 
L1 instruction cache 
misses 
L2 load misses 
L2 store misses 
L2 total cache misses 
 

PAPI_L1_DCM 
 
PAPI_L1_LDM 
PAPI_L1_ICA 
 
PAPI_L1_ICM 
 
PAPI_L2_LDM 
PAPI_L2_STM 
PAPI_L2_TCM 

TLB 
Operations 

Data translation 
lookaside buffer 
misses 

PAPI_TLB_DM 

 

 

 
 
 
 

5. PERFORMANCE METRICS 
 

5.1 Rate performance metrics 
 
Rate metrics have the suffix “_rate” (except for 

MFLOPS) and some examples include 
TOT_CYC_rate, TOT_INS_rate, L1_DCM_rate, 
and L2_TCM_rate. This naming convention uses 
the corresponding PAPI event name in Table 2 
divided by the process time with units of million 
per second. The following discussion will use 
those rate metrics of relevance in identifying 
bottle-necks in CAMx. 
 

 
TABLE 3. Examples of ratio metrics common 

to the Intel P4 and P4emt. 
 

 
Description Name 

Memory instructions versus total 
instructions 
Memory instructions per floating 
point instruction 
Data TLB misses per floating 
point instruction 
 

MEM_INS_TOT 
 
MEM_INS_FPINS 
 
TLB_DM_FPINS 

Respectively, L1 instruction, 
data, and total cache misses per 
floating point instruction 
 

L1_ICM_FPINS 
L1_DCM_FPINS 
L1_TCM_FPINS 

L2 total cache misses per 
floating point instruction 

L2_TCM_FPINS 

 

 

 

5.2 Ratio performance metrics 
 
In addition to rate metrics, ratios of PAPI 

events define a set of ratio metrics. Table 3 lists a 
few examples of ratio metrics used in the following 
discussion to identify performance bottle-necks in 
CAMx. Other rate metrics are introduced as 
needed. 

 
5.3 Profiling and code performance 

 
While not a metric, execution profiling is useful 

in determining where “hot spots” occur in the 
source code by measuring (cumulative) time 
consumed during the code execution. A profile of 
CAMx is discussed to identify the compute 
intensive routines and their code characteristics. 
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6. CAMx PERFORMANCE RESULTS 
 

6.1 Operations, instructions, and cycles 
Fig. 1 shows the process time for CAMx on P4 

and P4emt platforms. The left and right hand half 
of Fig. 1 shows, respectively, the P4 and P4emt 
results. Each group of executions corresponds to 
the same choice of compiler switches listed in 
Table 1. Comparing the pgf90 and ifort results on 
the P4 platforms shows the shortest times are for 
the pgf-opt and ifc-sse cases with 11,771and 
12,823 seconds, respectively. Surprisingly, the 
P4emt results are not an improvement on the P4 
values. This is despite the fact that the 
TOT_CYC_rate (cycles rate) and TOT_INS_rate 
(instruction rate) show the increase expected from 
the change in clock rate between 3GHz and 
3.4GHz. 
 

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

pg
f-6

0-
no

op
t-p

4

pg
f-6

0-
op

t-p
4

pg
f-6

0-
ss

e-
p4

ifc
-9

0-
no

op
t-p

4

ifc
-9

0-
op

t-p
4

ifc
-9

0-
ss

e-
p4

pg
f-6

0-
no

op
t-p

4e
m

t

pg
f-6

0-
op

t-p
4e

m
t

pg
f-6

0-
ss

e-
p4

em
t

ifc
-9

0-
no

op
t-p

4e
m

t

ifc
-9

0-
op

t-p
4e

m
t

ifc
-9

0-
ss

e-
p4

em
t

CAMx model with pgf90 and ifort compilers

P
ro

c
e

s
s

 t
im

e
 (

s
e

c
o

n
d

s
)

 
 
Fig. 1. Process time for CAMx with (alternately) pgf90 
and ifort compilers on P4 and P4emt processors (left 
and right half, respectively). Each compiler has the three 
groups of compiler switches defined in Table 1. 
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Fig. 2. Arithmetic instruction rates for CAMx with 
(alternately) pgf90 and ifort compilers on P4 and P4emt 
processors (left and right half, respectively). Each 
compiler has the three groups of compiler switches 
defined in Table 1. 

The higher level optimizations (sse) give little 
performance gain on the P4emt. When sse 
switches were enabled for the P4 the pgf90 time 
increased whereas the ifort time decreased. This 
confusing behavior is related to the way in which 
each compiler uses the sse instruction set on the 
two platforms. Fig. 2 shows the floating point (fp) 
and vector instruction rates corresponding to the 
optimization switch groups in Table 1. On the P4 
the pgf90 (sse) results show negligibly small 
vector instruction rates compared to fp whereas 
the reverse is true for ifc (sse). On the P4emt the 
fp instruction counts reported by PAPI have all but 
disappeared (with one exception) and vector 
instruction rates dominate. Thus, it appears that 
when either compiler detects the 64 bit hardware 
on a 64 bit kernel, it attempts to use the enhanced 
sse instruction set (with the exception of ifc-noopt). 
This approach takes advantage of the availability 
of considerably more hardware resources on the 
P4emt compared to the P4 when operating with a 
64 bit Linux kernel. However, one side effect when 
vector instructions predominate is that the Mflops 
reported by the PAPI event counter 
PAPI_MFLOPS underestimate Mflops. This is 
because they are based on the fp operation count. 
For those cases where such Mflops are correctly 
estimated they are shown in Fig. 3. The Mflops 
range from a low of 225 (ifc-noopt) to 375 (pgf-
opt). 
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Fig. 3. Floating point rates in million per second (Mflops) 
for CAMx with pgf90 (pgf) and ifort (ifc) compilers on the 
P4 processor. Each compiler has one of the three 
groups of compiler switches defined in Table 1. 

 

6.2 Memory footprint 
 

In comparing performance of compilers and 
processors the memory behavior is of special 
interest. Fig. 4 shows instruction rates for load 
(LD_INS_rate), store (SR_INS_rate), and the sum 
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of the two (MEM_TOT_rate). This shows that 
enabling optimization (with either compiler) 
reduces memory instruction rates. Also there is a 
small tendency to reduce the memory instruction 
rate when the same compiler is compared on the 
two platforms. In general, Fig. 4 shows that the 
rate of total memory instructions issued (loads 
plus stores) is voluminous. A high rate of memory 
instruction issue need not be an indicator of a 
performance bottleneck. Benchmarks with good 
vector character that deliver of the order of 1Gflop 
on a P4 can also show high memory access rates. 
However, an interesting differentiator is the 
number of memory instructions issued per floating 
point instruction. 
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Fig. 4. Memory instructions in million per second for 
CAMx with (alternately) pgf90 and ifort compilers on P3 
and P4emt processors (left and right half, respectively). 
Each compiler has the three groups of compiler 
switches defined in Table 1. 
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Fig. 5. Number of memory instructions per floating point 
instruction versus process time for CAMx on the P4 
processor with pgf90 (noopt, opt, sse) and ifort (noopt, 
opt) executions. Regression lines are added to show 
that process time increased with increasing 
MEM_INS_FPINS. 

 

Fig. 5 shows the correlation between this 
metric (MEM_INS_FPINS) and the process time 
(PTIME). There is a simple correlation and both 
linear and quadratic regression lines are shown.  
Lower values MEM_INS_FPINS correspond to 
smaller process time. This shows that process 
time is longest when memory instructions per fp 
instruction are as large as 7.9 (pgf-noopt) and 11.3 
(ifc-noopt) when optimization is disabled. 
Conversely, the range 2.9 (ifc-opt) to 4 (pgf-sse), 
or 3.7 (pgf-opt) shows the lower values of PTIME 
with the smallest time for the pgf-opt case. 

The results of the MEM_INS_FPINS metric 
suggests that CAMx is a memory-intensive 
algorithm. However, a memory intensive 
application, without a dominant vector code 
character (as is CAMx), is performance constricted 
on commodity architectures where memory 
bandwidth is limited by the FSB and cache design. 
The consequence of CAMx’s memory footprint is 
that cache can become a limiting critical resource 
and this is explored in the next section. 
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Fig. 6. Number of data TLB cache misses per floating 
point instruction versus process time for CAMx on the 
P4 processor with pgf90 (noopt, opt, sse) and ifort 
(noopt, opt) executions. 
 

Between the processor and the first level of 
cache (L1) there is the TLB cache. The translation 
lookaside buffer (TLB) is a small buffer (or cache) 
to which the processor presents a virtual memory 
address and looks up a table for a translation to a 
physical memory address. If the address is found 
in the TLB table then there is a hit (no translation 
is computed) and the processor continues.  The 
TLB buffer is usually small, and efficiency depends 
on hit rates as high as 98%. If the translation is not 
found (a TLB miss) then several cycles are lost 
while the physical address is translated. Therefore 
TLB misses degrade performance. PAPI offers 
counters for TLB miss events for both instruction 
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and data. In the case of CAMx it is the data TLB 
misses that are critical. Fig. 6 shows the data TLB 
misses per fp instruction (TLB_DM_FPINS) versus 
process time (PTIME). From this graph it is clear 
that the execution with the shortest time (pgf-opt) 
has the lowest number of dataTLB cache misses 
in the group of three points with the lowest 
process times in Figs. 5 and 6. However, a 
complete explanation of CAMx behavior on the P4 
platform is more subtle, and depends on cache 
performance. 
 

6.3 Cache usage 
 
Both the P4 and P4emt platforms discussed 

here have L1 and L2 caches. A cache miss occurs 
when data or instructions are not found in the 
cache and an excursion to higher level cache, or 
memory, is necessitated. Cache misses result in 
lost performance because of increasing latency in 
the memory hierarchy. Memory latency is smallest 
at the register level and increases by an order of 
magnitude for a L1 cache reference, and another 
order of magnitude to access L2 cache. 
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Fig. 7. L1 and L2 cache misses per memory instruction 
in million per second for CAMx with (alternately) pgf90 
and ifort compilers on P3 and P4emt processors (left 
and right half, respectively). Each compiler has the three 
groups of compiler switches defined in Table 1. 

 
 In the case of CAMX the number of cache 

misses per memory instruction is shown in Fig. 7 
for P4 and P4emt platforms. The L1 results are the 
data cache misses whereas for the L2 they are the 
total cache misses (in both cases the instruction 
cache misses are negligible by comparison). The 
L2 values have be scaled by a factor of 50. The 
key here is that while the pgf90-noopt case 
appears with low values, it has more than twice 
the memory references than the pgf-opt case. 

There is another view of the penalties 
associated with excursions to cache by the 
processor. Figs. 8 and 9, respectively, show rates 
for data TLB misses versus the L1 and L2 cache 
misses for the P4 and P4emt platforms. It is 
obvious that increasing data TLB miss rates also 
results in increasing L1 and L2 data cache miss 
rates. The range of 10-25 million/second data TBL 
miss rate is a very large value. When coupled with 
the correlated L1 and L2 cache misses one 
important performance bottle-neck in CAMx is 
clear: voluminous non-sequential data access.   
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Fig. 8. Data TLB data cache miss rates versus L1 data 
cache miss rates (both in million per second) for CAMx 
on the P4 (lower set) and P4emt (upper set). A linear 
regression line is shown for each case. 
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Fig. 9. Data TLB data cache miss rates versus L2 data 
cache miss rates (both in million per second) for CAMx 
on the P4 (lower set) and P4emt (upper set). A linear 
regression line is shown for each case.  
 

Inspection of Figs. 8 and 9, at a fixed value of 
data TLB misses, say 15 million/second, shows 
that the P4emt cache miss rates are almost a 
factor of two less than the P4 results. If cache 
misses were the critical performance bottle-neck 
then the P4emt performance of CAMx should be 
better than the P4 performance. Comparison in 
Fig. 1 of pgf-sse  on the P4 and P4emt shows that 
there is a performance gain. Conversely, the same 
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comparison for ifc-sse shows a performance 
degradation. However, neither of these 
optimizations produce the short process time of 
pgf-opt on the P4. This suggests that the 
extremely high data TLB misses for CAMx are a 
critical source of performance limitations. 

 

7. CAMX EXECUTION PROFILE 
 
An execution profile of CAMx is easily 

performed with the –Mprof=lines compiler switch in 
the pgf90/95 compiler. Results with the opt 
optimization switches is shown in Table 4. This 
shows those functions accounting for 95% of the 
cumulative process time with some that have a 
high calling overhead. Once the important 
functions are identified code inspection shows 
some reasons why vector instructions are scarce 
in CAMx. 

 
 

TABLE 4. CAMx P4 profile for opt switches  
 

 
Function 

 

Number of calls Time (%) 

 

 

hadvppm 
cpivot 
radslvr3 
trap 
diffus 
vrtslv 
trdiag 
ratejac3 
chemdrive 
average 
xyadvec 
ktherm 
vdiffimp 
zadvec 
massum 

372,106,488 
0 

1,012,218,877 
506,467,872 

4,252 
543,220,800 

1,086,441,600 
1,012,218,877 

4,252 
8,504 
4,252 

507,573,254 
543,220,800 

4,252 
10,748 

18 
14 
14 
8 
8 
5 
5 
4 
4 
3 
3 
3 
2 
2 
2 

……. 
95 

 

 

The top three routines account for 46% of the 
process time but inhibit loop vectorization either 
because of conditions such as non-vectorizable 
recurrences or wrongly ordered loop nests. 
Examples of the latter in radslvr3 clearly lead to 
data TLB misses when the innermost loop range is 
on the outermost array index. Subroutines 
radslvr3, trdiag, and ratejac3 have over 1 million 
calls, or some 860 calls per second. Others such 
as trap, vrtslv, ktherm, and vdiffimp have over 0.5 
million calls, or some 430 calls per second. Of this 

list those that account for a negligible amount of 
the process time but have a very high calling 
overhead should be inlined to reduce the cost of 
control transfer instructions. Inline methods are 
well documented in the PGI User’s Guide. 
Likewise interprocedural optimizations should be 
applied with the –Mipa  compiler switch. Both of 
these simple steps should give significant 
reductions of process time and will be tested at a 
later date. However, the removal of vectorization 
inhibitors in the top routines would require source 
code modifications. However, the tridiagonal 
solver trdiag does have a non-vectorizable 
recurrence. 
 

8. CONCLUSIONS 
 
This performance analysis of CAMx, shows 

that this is a memory intensive application with a 
minimum of 3 to 4 memory operations to each 
floating point operation. Also, a large value of the 
data TLB miss rate was measured. In combination 
these two characteristics of the CAMx code place 
a limit on the optimal performance possible from 
CAMx on commodity platforms. This is because, 
by design, commodity hardware solutions offer a 
cost effective compromise between processor 
clock rates, cache size, and bandwidth (or latency) 
to memory. 

In its present form, CAMx gains mostly from 
improvements in the scalar performance of the 
hardware. But, despite these observations, a 
profile of CAMx performance, followed by code 
inspection, does suggest that there is scope for 
performance improvement beyond the 375 Mflop 
range it currently delivers on the P4. Although 
longer run times were found on the P4emt, this 64 
bit platform with a 64 bit kernel more easily 
supports large files and has better arithmetic 
precision. The question of I/O performance on the 
P4 and P4emt platforms is still an open issue.   
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