
 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

1

PERFORMANCE ANALYSIS OF CAMx
ON COMMODITY PLATFORMS

George Delic*

HiPERiSM Consulting, LLC, Durham, NC

Byeong-Uk Kim and Harvey E. Jeffries

Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC

1. INTRODUCTION

This is a progress report on a project to

evaluate industry standard fortran 90/95 compilers
for IA-32 Linux™ commodity platforms when
applied to Air Quality Models (AQM). The goal is
to determine the optimal performance and
workload though-put achievable with commodity
hardware for such models because they are in
wide-spread use on these platforms. New results
are presented for CAMx 4.03 that give insight into
the algorithm’s performance on commodity
architectures. Important performance bottle-necks
are identified with the aid of proprietary software to
collect and compute performance metrics using a
publicly available hardware performance interface.

2. CHOICE OF HARDWARE, OPERATING
SYSTEM, AND COMPILERS

The hardware used for the results reported

here is the Intel Pentium 4 Xeon (P4) and Pentium
Xeon 64EMT (P4emt) processors. These have
processor clock rates of 3GHz and 3.4GHz,
respectively. Each is in a dual configuration with a
corresponding front side bus (FSB) of 533MHz
and 800HMz shared by each pair of processors.
The operating system (OS) is HiPERiSM
Consulting, LLC’s modification of the Linux™ 2.6.9
kernel to include a patch that enables access to
hardware performance counters. This modification
allows the use of the Performance Application
Programming Interface (PAPI) performance event
library (PAPI, 2005) to collect hardware
performance counter values as the code executes.
The compilers used were the Portland pgf90/95
(release 6.0) and Intel ifort (release 9.0) for the
three groups of optimization switches shown in
Table 1.

 These architectures offer Streaming Single-
Instruction-Multiple-Data Extensions, (SSE) to

*Corresponding author: George Delic, HiPERiSM

Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514-
0569; e-mail: george@hiperism.com

enable vectorization of loops operating on multiple
elements in a data set with a single operation. This
is enabled through a compiler switch (sse in Table
1) and has been used in these tests.

TABLE 1. P4 compiler command and switches

Compiler

and
platform

Compiler
optimization

switches

Switch
group

mnemonic

pgf95
(P4*)
(P4emt**)

–O0
–O2
–fast –Mvect=sse

noopt
opt
sse

Ifort
(P4*)
(P4emt**)

-O0 -Ob0 -unroll0
-O3 -Ob2 -prefetch-
-xW -O3 -Ob0 -prefetch-

noopt
opt
sse

* Other P4 options include (a) for pgf95: –tp p7 -pc 64
-Mdalign -Mextend -Mnoframe -Mlfs -byteswapio –Wl,
-Bstatic, and (b) for ifort: -tpp7 -FI -convert big_endian

** Other P4emt options include (a) for pgf95: -tp p7-64
-mcmodel=medium -Mextend -Mnoframe –byteswapio,
and (b) for ifort: -tpp7 -FI -convert big_endian
-mcmodel=large -i_dynamic

3. CHOICE OF BENCHMARKS

The CAMx code developed by ENVIRON
(ENVIRON) is a Fortran 77 code for an Eulerian
photochemical model that is widely used in the
AQM community. This benchmark analysis
includes a selected case for the 2000 episode on
8/22 in the Houston Greater Metro area, that is
labeled as “base5a.regular” by the modeling team
at the Texas Commission on Environmental
Quality (TCEQ). Modeling files are obtainable from
the TCEQ URL (TCEQ)

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

2

4. HARDWARE PERFORMANCE EVENTS

The PAPI (PAPI, 2005) interface defines over

a hundred hardware performance events, but not
all of these events are available on all platforms.
For the Intel hardware under discussion the
number of hardware events that can be collected
are, respectively, 28 (P4) and 25 (P4emt) and
Table 2 only events that are common to them. Not
all events can be collected in a single execution
due to the fact that the number of hardware
counters is small (typically four). Thus, multiple
executions are needed to collect all available
events on any given platform. The process time
(PTIME) reported here is obtained from the
hardware performance counter interface.

TABLE 2. PAPI events common to the Intel P3,

P4 and P4emt.

Category Description Name

Floating
Point
Operations

Floating point
instructions
Floating point
operations

PAPI_FP_INS

PAPI_FP_OPS

Instruction
Counting

Total cycles
Instructions issued
Instructions
completed
Vector/SIMD
instructions

PAPI_TOT_CYC
PAPI_TOT_IIS
PAPI_TOT_INS

PAPI_VEC_INS

Data
Access

Cycles stalled on any
resource

PAPI_RES_STL

Cache
Access

L1 data cache
misses
L1 load misses
L1 instruction cache
accesses
L1 instruction cache
misses
L2 load misses
L2 store misses
L2 total cache misses

PAPI_L1_DCM

PAPI_L1_LDM
PAPI_L1_ICA

PAPI_L1_ICM

PAPI_L2_LDM
PAPI_L2_STM
PAPI_L2_TCM

TLB
Operations

Data translation
lookaside buffer
misses

PAPI_TLB_DM

5. PERFORMANCE METRICS

5.1 Rate performance metrics

Rate metrics have the suffix “_rate” (except for

MFLOPS) and some examples include
TOT_CYC_rate, TOT_INS_rate, L1_DCM_rate,
and L2_TCM_rate. This naming convention uses
the corresponding PAPI event name in Table 2
divided by the process time with units of million
per second. The following discussion will use
those rate metrics of relevance in identifying
bottle-necks in CAMx.

TABLE 3. Examples of ratio metrics common

to the Intel P4 and P4emt.

Description Name

Memory instructions versus total
instructions
Memory instructions per floating
point instruction
Data TLB misses per floating
point instruction

MEM_INS_TOT

MEM_INS_FPINS

TLB_DM_FPINS

Respectively, L1 instruction,
data, and total cache misses per
floating point instruction

L1_ICM_FPINS
L1_DCM_FPINS
L1_TCM_FPINS

L2 total cache misses per
floating point instruction

L2_TCM_FPINS

5.2 Ratio performance metrics

In addition to rate metrics, ratios of PAPI

events define a set of ratio metrics. Table 3 lists a
few examples of ratio metrics used in the following
discussion to identify performance bottle-necks in
CAMx. Other rate metrics are introduced as
needed.

5.3 Profiling and code performance

While not a metric, execution profiling is useful

in determining where “hot spots” occur in the
source code by measuring (cumulative) time
consumed during the code execution. A profile of
CAMx is discussed to identify the compute
intensive routines and their code characteristics.

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

3

6. CAMx PERFORMANCE RESULTS

6.1 Operations, instructions, and cycles
Fig. 1 shows the process time for CAMx on P4

and P4emt platforms. The left and right hand half
of Fig. 1 shows, respectively, the P4 and P4emt
results. Each group of executions corresponds to
the same choice of compiler switches listed in
Table 1. Comparing the pgf90 and ifort results on
the P4 platforms shows the shortest times are for
the pgf-opt and ifc-sse cases with 11,771and
12,823 seconds, respectively. Surprisingly, the
P4emt results are not an improvement on the P4
values. This is despite the fact that the
TOT_CYC_rate (cycles rate) and TOT_INS_rate
(instruction rate) show the increase expected from
the change in clock rate between 3GHz and
3.4GHz.

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

pg
f-6

0-
no

op
t-p

4

pg
f-6

0-
op

t-p
4

pg
f-6

0-
ss

e-
p4

ifc
-9

0-
no

op
t-p

4

ifc
-9

0-
op

t-p
4

ifc
-9

0-
ss

e-
p4

pg
f-6

0-
no

op
t-p

4e
m

t

pg
f-6

0-
op

t-p
4e

m
t

pg
f-6

0-
ss

e-
p4

em
t

ifc
-9

0-
no

op
t-p

4e
m

t

ifc
-9

0-
op

t-p
4e

m
t

ifc
-9

0-
ss

e-
p4

em
t

CAMx model with pgf90 and ifort compilers

P
ro

c
e

s
s

 t
im

e
 (

s
e

c
o

n
d

s
)

Fig. 1. Process time for CAMx with (alternately) pgf90
and ifort compilers on P4 and P4emt processors (left
and right half, respectively). Each compiler has the three
groups of compiler switches defined in Table 1.

0
40
80

120
160
200
240
280
320
360

pg
f-6

0-
no

op
t-p

4

pg
f-6

0-
op

t-p
4

pg
f-6

0-
ss

e-
p4

ifc
-9

0-
no

op
t-p

4

ifc
-9

0-
op

t-p
4

ifc
-9

0-
ss

e-
p4

pg
f-6

0-
no

op
t-p

4e
m

t

pg
f-6

0-
op

t-p
4e

m
t

pg
f-6

0-
ss

e-
p4

em
t

ifc
-9

0-
no

op
t-p

4e
m

t

ifc
-9

0-
op

t-p
4e

m
t

ifc
-9

0-
ss

e-
p4

em
t

CAMx model with pgf90and ifort compilers

In
s

tr
u

c
ti

o
n

 r
a

te
 (

m
il

li
o

n
/s

e
c

o
n

d
)

Floating point

Vector

Fig. 2. Arithmetic instruction rates for CAMx with
(alternately) pgf90 and ifort compilers on P4 and P4emt
processors (left and right half, respectively). Each
compiler has the three groups of compiler switches
defined in Table 1.

The higher level optimizations (sse) give little
performance gain on the P4emt. When sse
switches were enabled for the P4 the pgf90 time
increased whereas the ifort time decreased. This
confusing behavior is related to the way in which
each compiler uses the sse instruction set on the
two platforms. Fig. 2 shows the floating point (fp)
and vector instruction rates corresponding to the
optimization switch groups in Table 1. On the P4
the pgf90 (sse) results show negligibly small
vector instruction rates compared to fp whereas
the reverse is true for ifc (sse). On the P4emt the
fp instruction counts reported by PAPI have all but
disappeared (with one exception) and vector
instruction rates dominate. Thus, it appears that
when either compiler detects the 64 bit hardware
on a 64 bit kernel, it attempts to use the enhanced
sse instruction set (with the exception of ifc-noopt).
This approach takes advantage of the availability
of considerably more hardware resources on the
P4emt compared to the P4 when operating with a
64 bit Linux kernel. However, one side effect when
vector instructions predominate is that the Mflops
reported by the PAPI event counter
PAPI_MFLOPS underestimate Mflops. This is
because they are based on the fp operation count.
For those cases where such Mflops are correctly
estimated they are shown in Fig. 3. The Mflops
range from a low of 225 (ifc-noopt) to 375 (pgf-
opt).

200

220

240

260

280

300

320

340

360

380

400

10000 14000 18000 22000 26000 30000 34000 38000

PTIME (seconds)

M
fl

o
p

s

pgf-opt

pgf-sse

ifc-opt

pgf-noopt

ifc-noopt

Fig. 3. Floating point rates in million per second (Mflops)
for CAMx with pgf90 (pgf) and ifort (ifc) compilers on the
P4 processor. Each compiler has one of the three
groups of compiler switches defined in Table 1.

6.2 Memory footprint

In comparing performance of compilers and
processors the memory behavior is of special
interest. Fig. 4 shows instruction rates for load
(LD_INS_rate), store (SR_INS_rate), and the sum

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

4

of the two (MEM_TOT_rate). This shows that
enabling optimization (with either compiler)
reduces memory instruction rates. Also there is a
small tendency to reduce the memory instruction
rate when the same compiler is compared on the
two platforms. In general, Fig. 4 shows that the
rate of total memory instructions issued (loads
plus stores) is voluminous. A high rate of memory
instruction issue need not be an indicator of a
performance bottleneck. Benchmarks with good
vector character that deliver of the order of 1Gflop
on a P4 can also show high memory access rates.
However, an interesting differentiator is the
number of memory instructions issued per floating
point instruction.

0

400

800

1200

1600

2000

2400

pg
f-6

0-
no

op
t-p

4

pg
f-6

0-
op

t-p
4

pg
f-6

0-
ss

e-
p4

ifc
-9

0-
no

op
t-p

4

ifc
-9

0-
op

t-p
4

ifc
-9

0-
ss

e-
p4

pg
f-6

0-
no

op
t-p

4e
m

t

pg
f-6

0-
op

t-p
4e

m
t

pg
f-6

0-
ss

e-
p4

em
t

ifc
-9

0-
no

op
t-p

4e
m

t

ifc
-9

0-
op

t-p
4e

m
t

ifc
-9

0-
ss

e-
p4

em
t

CAMx model with pgf90 and ifort compilers

R
a
te

 (
m

il
li

o
n

/s
e
c
o

n
d

)

LD_INS_rate

SR_INS_rate

MEM_TOT_rate

Fig. 4. Memory instructions in million per second for
CAMx with (alternately) pgf90 and ifort compilers on P3
and P4emt processors (left and right half, respectively).
Each compiler has the three groups of compiler
switches defined in Table 1.

0

2

4

6

8

10

12

14

10000 14000 18000 22000 26000 30000 34000 38000

PTIME (seconds)

M
E

M
_
IN

S
_
F

P
IN

S

pgf-opt

ifc-opt

pgf-sse

pgf-noopt

ifc-noopt

Fig. 5. Number of memory instructions per floating point
instruction versus process time for CAMx on the P4
processor with pgf90 (noopt, opt, sse) and ifort (noopt,
opt) executions. Regression lines are added to show
that process time increased with increasing
MEM_INS_FPINS.

Fig. 5 shows the correlation between this
metric (MEM_INS_FPINS) and the process time
(PTIME). There is a simple correlation and both
linear and quadratic regression lines are shown.
Lower values MEM_INS_FPINS correspond to
smaller process time. This shows that process
time is longest when memory instructions per fp
instruction are as large as 7.9 (pgf-noopt) and 11.3
(ifc-noopt) when optimization is disabled.
Conversely, the range 2.9 (ifc-opt) to 4 (pgf-sse),
or 3.7 (pgf-opt) shows the lower values of PTIME
with the smallest time for the pgf-opt case.

The results of the MEM_INS_FPINS metric
suggests that CAMx is a memory-intensive
algorithm. However, a memory intensive
application, without a dominant vector code
character (as is CAMx), is performance constricted
on commodity architectures where memory
bandwidth is limited by the FSB and cache design.
The consequence of CAMx’s memory footprint is
that cache can become a limiting critical resource
and this is explored in the next section.

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

10000 14000 18000 22000 26000 30000 34000 38000

PTIME (seconds)

T
L

B
_

D
M

_
F

P
IN

S

pgf-sse

ifc-opt

pgf-noopt

ifc-noopt

pgf-opt

Fig. 6. Number of data TLB cache misses per floating
point instruction versus process time for CAMx on the
P4 processor with pgf90 (noopt, opt, sse) and ifort
(noopt, opt) executions.

Between the processor and the first level of
cache (L1) there is the TLB cache. The translation
lookaside buffer (TLB) is a small buffer (or cache)
to which the processor presents a virtual memory
address and looks up a table for a translation to a
physical memory address. If the address is found
in the TLB table then there is a hit (no translation
is computed) and the processor continues. The
TLB buffer is usually small, and efficiency depends
on hit rates as high as 98%. If the translation is not
found (a TLB miss) then several cycles are lost
while the physical address is translated. Therefore
TLB misses degrade performance. PAPI offers
counters for TLB miss events for both instruction

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

5

and data. In the case of CAMx it is the data TLB
misses that are critical. Fig. 6 shows the data TLB
misses per fp instruction (TLB_DM_FPINS) versus
process time (PTIME). From this graph it is clear
that the execution with the shortest time (pgf-opt)
has the lowest number of dataTLB cache misses
in the group of three points with the lowest
process times in Figs. 5 and 6. However, a
complete explanation of CAMx behavior on the P4
platform is more subtle, and depends on cache
performance.

6.3 Cache usage

Both the P4 and P4emt platforms discussed

here have L1 and L2 caches. A cache miss occurs
when data or instructions are not found in the
cache and an excursion to higher level cache, or
memory, is necessitated. Cache misses result in
lost performance because of increasing latency in
the memory hierarchy. Memory latency is smallest
at the register level and increases by an order of
magnitude for a L1 cache reference, and another
order of magnitude to access L2 cache.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

pg
f-6

0-
no

op
t-p

4

pg
f-6

0-
op

t-p
4

pg
f-6

0-
ss

e-
p4

ifc
-9

0-
no

op
t-p

4

ifc
-9

0-
op

t-p
4

ifc
-9

0-
ss

e-
p4

pg
f-6

0-
no

op
t-p

4e
m

t

pg
f-6

0-
op

t-p
4e

m
t

pg
f-6

0-
ss

e-
p4

em
t

ifc
-9

0-
no

op
t-p

4e
m

t

ifc
-9

0-
op

t-p
4e

m
t

ifc
-9

0-
ss

e-
p4

em
t

CAMx model with pgf90 and ifort compilers

C
a
c
h

e
 m

is
s
e
s
 p

e
r

m
e
m

o
ry

in
s
tr

u
c
ti

o
n

L1

L2 x 50

Fig. 7. L1 and L2 cache misses per memory instruction
in million per second for CAMx with (alternately) pgf90
and ifort compilers on P3 and P4emt processors (left
and right half, respectively). Each compiler has the three
groups of compiler switches defined in Table 1.

 In the case of CAMX the number of cache

misses per memory instruction is shown in Fig. 7
for P4 and P4emt platforms. The L1 results are the
data cache misses whereas for the L2 they are the
total cache misses (in both cases the instruction
cache misses are negligible by comparison). The
L2 values have be scaled by a factor of 50. The
key here is that while the pgf90-noopt case
appears with low values, it has more than twice
the memory references than the pgf-opt case.

There is another view of the penalties
associated with excursions to cache by the
processor. Figs. 8 and 9, respectively, show rates
for data TLB misses versus the L1 and L2 cache
misses for the P4 and P4emt platforms. It is
obvious that increasing data TLB miss rates also
results in increasing L1 and L2 data cache miss
rates. The range of 10-25 million/second data TBL
miss rate is a very large value. When coupled with
the correlated L1 and L2 cache misses one
important performance bottle-neck in CAMx is
clear: voluminous non-sequential data access.

0

5

10

15

20

25

30

35

40

0 10 20 30 40

L1_DCM_rate

T
L

B
_D

M
_r

at
e

P4

P4emt

Linear (P4emt)

Linear (P4)

Fig. 8. Data TLB data cache miss rates versus L1 data
cache miss rates (both in million per second) for CAMx
on the P4 (lower set) and P4emt (upper set). A linear
regression line is shown for each case.

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

L2_TCM_rate

T
L

B
_
D

M
_
ra

te

P4

P4emt

Linear (P4emt)

Linear (P4)

Fig. 9. Data TLB data cache miss rates versus L2 data
cache miss rates (both in million per second) for CAMx
on the P4 (lower set) and P4emt (upper set). A linear
regression line is shown for each case.

Inspection of Figs. 8 and 9, at a fixed value of
data TLB misses, say 15 million/second, shows
that the P4emt cache miss rates are almost a
factor of two less than the P4 results. If cache
misses were the critical performance bottle-neck
then the P4emt performance of CAMx should be
better than the P4 performance. Comparison in
Fig. 1 of pgf-sse on the P4 and P4emt shows that
there is a performance gain. Conversely, the same

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

6

comparison for ifc-sse shows a performance
degradation. However, neither of these
optimizations produce the short process time of
pgf-opt on the P4. This suggests that the
extremely high data TLB misses for CAMx are a
critical source of performance limitations.

7. CAMX EXECUTION PROFILE

An execution profile of CAMx is easily

performed with the –Mprof=lines compiler switch in
the pgf90/95 compiler. Results with the opt
optimization switches is shown in Table 4. This
shows those functions accounting for 95% of the
cumulative process time with some that have a
high calling overhead. Once the important
functions are identified code inspection shows
some reasons why vector instructions are scarce
in CAMx.

TABLE 4. CAMx P4 profile for opt switches

Function

Number of calls Time (%)

hadvppm
cpivot
radslvr3
trap
diffus
vrtslv
trdiag
ratejac3
chemdrive
average
xyadvec
ktherm
vdiffimp
zadvec
massum

372,106,488
0

1,012,218,877
506,467,872

4,252
543,220,800

1,086,441,600
1,012,218,877

4,252
8,504
4,252

507,573,254
543,220,800

4,252
10,748

18
14
14
8
8
5
5
4
4
3
3
3
2
2
2

…….
95

The top three routines account for 46% of the
process time but inhibit loop vectorization either
because of conditions such as non-vectorizable
recurrences or wrongly ordered loop nests.
Examples of the latter in radslvr3 clearly lead to
data TLB misses when the innermost loop range is
on the outermost array index. Subroutines
radslvr3, trdiag, and ratejac3 have over 1 million
calls, or some 860 calls per second. Others such
as trap, vrtslv, ktherm, and vdiffimp have over 0.5
million calls, or some 430 calls per second. Of this

list those that account for a negligible amount of
the process time but have a very high calling
overhead should be inlined to reduce the cost of
control transfer instructions. Inline methods are
well documented in the PGI User’s Guide.
Likewise interprocedural optimizations should be
applied with the –Mipa compiler switch. Both of
these simple steps should give significant
reductions of process time and will be tested at a
later date. However, the removal of vectorization
inhibitors in the top routines would require source
code modifications. However, the tridiagonal
solver trdiag does have a non-vectorizable
recurrence.

8. CONCLUSIONS

This performance analysis of CAMx, shows

that this is a memory intensive application with a
minimum of 3 to 4 memory operations to each
floating point operation. Also, a large value of the
data TLB miss rate was measured. In combination
these two characteristics of the CAMx code place
a limit on the optimal performance possible from
CAMx on commodity platforms. This is because,
by design, commodity hardware solutions offer a
cost effective compromise between processor
clock rates, cache size, and bandwidth (or latency)
to memory.

In its present form, CAMx gains mostly from
improvements in the scalar performance of the
hardware. But, despite these observations, a
profile of CAMx performance, followed by code
inspection, does suggest that there is scope for
performance improvement beyond the 375 Mflop
range it currently delivers on the P4. Although
longer run times were found on the P4emt, this 64
bit platform with a 64 bit kernel more easily
supports large files and has better arithmetic
precision. The question of I/O performance on the
P4 and P4emt platforms is still an open issue.

REFERENCES

ENVIRON: http://www.camx.com

PAPI, 2005: Performance Application
Programming Interface, http://icl.cs.utk.edu/papi.
Note that the use of PAPI requires a Linux kernel
patch (as described in the distribution).

TCEQ:
http://www.tnrcc.state.tx.us/air/aqp/airquality_phot
omod.html#section4
http://www.tnrcc.state.tx.us/air/aqp/airquality_phot
omod.html#camx

http://icl.cs.utk.edu/papi
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#section4
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#section4
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#camx
http://www.tnrcc.state.tx.us/air/aqp/airquality_photomod.html#camx

