

COMPARING COMPILERS ON INTEL™ PENTIUM 3 and PENTIUM 4

PROCESSORS WITH THE POM FLOATING POINT ALGORITHM
George Delic *

HiPERiSM Consulting, LLC, Durham, NC
e-mail: george@hiperism.com

Web address: http://www.hiperism.com
Voice (919) 484-9803 Fax (919) 806-2813

1. INTRODUCTION

This is part of a series of reports on a project
to evaluate industry standard fortran 90/95
compilers for IA-32 Linux™ commodity platforms.
This report shows results, in a side-by-side
comparison for each compiler, for the Intel™
Pentium 3 (P3) and Pentium 4 Xeon (P4)
processors for the Princeton Ocean Model.

2.0 CHOICE OF HARDWARE AND
OPERATING SYSTEM

Results for the wall clock time are compared for
benchmarks compiled using four different
Fortran compilers with the Linux™ operating
system and one with Windows 2000 (because the
Linux™ version was not yet installed). For this
project benchmarks were executed in serial mode
on a dual processor Intel™ Pentium III (256KB L2
cache) and a dual processor Pentium 4 Xeon
3.06GHz (1MB L3 cache). These architectures
offers Streaming Single-Instruction-Multiple-Data
Extensions (with version 2, SSE2, for the Xeon).
This enables vectorization of loops operating on
multiple elements in a data set with a single
operation. Where compilers specifically enable
SSE/SSE2 it has been tested.

3.0 CHOICE OF COMPILERS

The choice of compilers for Linux™ IA-32
platforms now includes several vendor-supported
products. The importance of this category is that
vendor products have technical support and
undergo continuous development with ports to
new architectures as they arrive in the
marketplace. The four compilers chosen in this
survey are described separately in the following
sections and compiler switches used in the
benchmarks are also discussed. However, it is

noted here that while all compilers offer a switch to
target the Pentium 4, only three (Intel, Lahey, and
Portland) offer a specific SSE/SSE2 option (see
also notes below).

3.1 Absoft

Absoft f77 and f90/f95 are the Fortran
compilers included in the Absoft Pro Fortran™ 8.0
package for Linux™ offered by the Absoft
Corporation (http://www.absoft.com). The f90/f95
version has a Cray front-end and resulted from a
five-year collaboration with Cray Research. With
this compiler use of the –O3 compiler switch
enables automatic architecture detection and
selection of the Pentium 3 or 4 instruction set.

3.2 Intel

The Intel Fortran Compiler version 8.0 targets
both Intel IA-32 and IA-64 (Itanium) architectures,
but only the former has been used in this project
so far. Details on the compiler features are
available at HiPERiSM Consulting, LLC’s URL.
Code for target architectures are generated with
either the –tpp6 (Pentium 3) or –tpp7 (Pentium 4)
switch.

3.3 Lahey

The Lahey/Fujitsu Fortran 95 compiler
(hereafter Lahey) for Linux™ is available from
Lahey Computer Systems, Inc.,
(http://www.lahey.com). The Express version 5.6
for Microsoft Windows 2000™ was used on the
Pentium 3 because it was available from another
project for the same hardware. With this compiler
use of the –tpp compiler switch enables automatic
architecture detection for the P3 only. However,
release v7.1 (for Windows) and v6.2 (for Linux)
support compiler switches –tp4 and –sse2 to
target the Pentium 4 Xeon and the SSE2

http://www.hiperism.com/
http://www.lahey.com/

instruction set. The v6.2 release and the new
switches are studied in this report.

3.4 Portland

The pgf90™ fortran compiler (Linux™
distribution) from the Portland Group,
(http://www.pgroup.com) was used in the CDK 4.0
release where it supports OpenMP, MPI and
OpenMP+MPI parallel applications on HiPERiSM’s
IA-32 Linux™ cluster. With this compiler use of the
–fast compiler switch enables automatic
architecture detection. Note that the CDK 5.1
release (not used here) may offer additional
performance enhancement of the Pentium 4 Xeon
processor with the use of SSE2 options.

3.5 Portability and migration issues

Portability issues come up when legacy
Fortran code needs to be compiled. In this respect
a compiler that allows extensions to the f90/f95
standard can save time and effort. The two
compilers that offer the widest scope in portability
are those from Absoft and Portland. Compilers
from Lahey and Intel are less forgiving of such
extensions.

Here we also mention some migration issues

that came up with compiler and architecture
changes. The change in architecture from P3 to
P4 Xeon also involves changes in library versions.
As a result, two of the compilers had to either be
upgraded or have patches applied. Installation of
the Absoft 8.0 compiler for the Xeon processor
and the newer Linux Kernel does require
download and application of two patch files to
resolve glibc version issues (these patch files are
available from the Absoft URL given in Section
3.1). Likewise, an attempt was made to install the
7.1 release of the Intel Fortran compiler on the P4
Xeon. However, again version skew with glibc
suggested the simpler option of installing the 8.0
release. Whenever the version of a compiler is
changed performance is also expected to change.
This is especially true of the Intel compiler since
major performance improvements are announced
with the 8.0 release. Therefore, the changes in
performance reported here for the Intel compiler
are due to improvements in the compiler
technology as well as the change in architecture.

4.0 CHOICE OF BENCHMARKS

4.1 Introduction

The Princeton Ocean Model (POM) algorithm

is used here and has been executed on a wide
variety of platforms. The serial version is used
here in studying how a compiler and architecture
interact for a real-world model that was optimized
for performance on vector register machnines. A
fuller discussion of the POM (in an MPI version) is
available at
http://www.hiperism.com/hc_6_10v30.htm. What
follows introduces only the essentials of the cases
studied here.

4.2 Princeton Ocean Model Algorithm

The Princeton Ocean Model (POM) is a legacy
Fortran 77 code with compute kernels consisting
of over three hundred vectorizable loops. Typically
these are triple-nested loops (i,j,k) that perform
operations over a three-dimensional finite
difference grid. The vertical zones over the k
range form the outermost loop in the nest. The
number of iterations varies with the choice of data
set as shown in Table 1. For the choices shown
here, the k range is constant while the two inner
loops scale substantially. The inner loop structure
is conventional and this code should present
compilers with good prospects for vectorization.
Two important features of the POM should be
noted: (a) the algorithm is unstable in single
precision arithmetic and therefore double precision
is used for all compilers, and (b) long integers are
required and this option must be specifically
requested with the Lahey compiler which
otherwise produces run time errors.

Table 4.1 Problem sizes and scaling for the POM
algorithm.

GRID imax jmax kmax Scaling

1 100 40 15 1

2 128 128 16 4.37

3 256 256 16 17.47

5.0 COMPARING EXECUTION TIMES

The following sections summarize execution
time with four compilers for the POM algorithm
with the three data sets of Table 4.1 (GRID 1 to 3).

5.1 Timing performance

Whole code execution was measured with
calls to the Fortran 90/95 system_clock routine for

http://www.pgroup.com/
http://www.hiperism.com/hc_6_10v30.htm

all compilers as this was deemed to be the most
portable and accurate timing method.

5.3 Princeton Ocean Model results

For the POM algorithm the choice of compiler
switches is summarized in Table 5.1. Note the use
of the target architecture switches (often these are
implicit in the optimization level). Timing results
(without SSE enabled) are shown in Tables 5.2
(Pentium 3) and 5.3 (Pentium 4). Figures 1 and 2,
for Pentium 3 and Pentium 4 respectively, show
these times as bar charts. For the largest problem
size the Lahey compiler is noticeably less efficient
than the others and this is due to the requirement
of the --long option for large integers.

Table 5.1 Compiler command and switches for
the POM algorithm on the P3 and P4 Xeon
processors.

Compiler
and
version

Compiler command
and selected
switches

Effect of
switches

Absoft
8.0 (P3),
Absoft
8.0 (P4)

f90 –s –cpu:p6 –O3
–N113 –ffixed
f90 –s –cpu:p7 –O3
–N113 –ffixed

Optimize for P3
or
P4 Xeon target

Intel
7.1 (P3)

Intel
8.0 (P4)

ifc –O3 –r8 –tpp6 –
FI
ifc –O3 –r8 –xK
–tpp6 –FI
ifort –fast –r8 –tpp7
–FI
ifort –fast –r8 –xW
–tpp7 –FI

Optimize for P3

Vectorize and
enable SSE.
Optimize for P4
Xeon target.
Vectorize and
enable SSE2.

Lahey
5.6 (P3)
Lahey
6.2 (P4)

lf95 –long –tpp –fix
–dbl
lf95 --long --O2 --
tp4 --fix --dbl
lf95 --long --O2 --
tp4 --sse2 --fix --dbl

Optimize for P3
target.
Optimize for P4
target.
Enable SSE2.

Portland
4.0
(P3 and
P4)

pgf90 –fast –Mvect
–r8
pgf90 –fast
–Mvect=sse –r8

Vectorize

Enable SSE

Table 5.2 Execution times (seconds) for the POM
algorithm with four compilers on the Pentium III
(933 MHz) without SSE enabled.

GRID Absoft Intel Lahey Portland

1 825.9 786.9 805.3 755.3

2 4412.7 4234.6 4795.7 3736.1

3 16761.0 16895.4 19721.9 15814.3

Table 5.3 Execution times (seconds) for the POM
algorithm with four compilers on the Pentium 4
Xeon (3.06 MHz, 1MB L3 cache) without SSE
enabled.

GRID Absoft Intel Lahey Portland

1 167.7 156.1 189.5 190.1

2 1925.9 1518.9 2809.7 1756.7

3 8685.2 7432.3 12731.8 8764.8

POM Floating Point Algorithm (P3 933 MHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3

GRID

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Absoft

Intel

Lahey

Portland

Fig. 1 Execution times of four different compilers
for the POM floating point algorithm (without SSE)
on the Pentium 3.

POM Floating Point Algorithm (P4 Xeon 3GHz)

0

2000

4000

6000

8000

10000

12000

1 2 3

GRID

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

Absoft

Intel

Lahey

Portland

Fig. 2 Execution times of four different compilers
for the POM floating point algorithm (without SSE)
on the Pentium 4 Xeon.

It is interesting to observe the changes in
performance between the Pentium 3 and 4. As
expected the execution time rises for both
processors as the problem size scales.

On the Pentium 3 the spread in performance is
relatively small (with the exception of the Lahey

compiler result for GRID 3). The Portland compiler
reported the lowest wall clock times for all three
problem sizes. On the Pentium 4 the situation
differs in two respects: (a) the Lahey compiler
offers the longest execution times (noticeably for
GIRD 2 and GRID 3), and (b) the Intel compiler
delivered the shortest execution times for all three
problem sizes. Hence, the variability in compiler
performance is, in general, greater for the Xeon
processor when compared to the P3.

To compare the relative performance gain for each
compiler due to a change in architecture Figure 3
shows the ratio of the Pentium 3 execution times
to those of the Pentium 4. For all four compilers
the performance gain is in the range 4 to 5 for
GRID 1, but declines to a range of 1.7 to 2.8
(GRID 2) and 1.6 to 2.3 (GRID 3). Since the trend
in performance degradation is the same for all four
compilers, it is surmised that this is due to
increases in cache misses and enhanced memory
accesses. In particular, the poor results for GRID 3
suggest that the largest problem size experiences
relative performance loss due to memory
bandwidth limitations since the memory traffic
increases substantially as the problem size
increases. This result is surprising in view of the
sophisticated compiler optimizations employed by
all four compilers. Presumably the additional layer
of L3 cache on the P4 Xeon requires careful hand-
tuning despite the deep vector character of the two
inner loops (i,j). A deeper performance analysis of
the underlying reasons for this behavior is the
subject of a future report. Memory bandwidth
issues on both the P3 and P4 nodes are the
subject of a separate report in this series.

POM Floating Point Algorithm

(3 GHz P4 versus 933 MHz P3)

0

1

2

3

4

5

1 2 3

GRID

R
a

ti
o

 o
f

P
3

 t
o

 P
4

 t
im

e

Absoft

Intel

Lahey

Portland

Fig. 3 Ratio of execution times of four different
compilers on the Pentium 3 versus the Pentium 4
Xeon for the POM floating point algorithm (without
SSE).

6.0 EVALUATION OF SSE RESULTS

Three of the compilers (Intel, Lahey, and
Portland) include specific switches to enable the
SSE2 feature of the Pentium 4 architecture. Two
of these (Intel and Portland) also were used on the
Pentium 3 for SSE testing. For regular data
structure and vectorizable loops enabling these
instruction sets should produce enhanced
performance on this generation of processors.

The SSE options are enabled as indicated in

Table 5.1 for the POM floating point algorithm.
Figures 6 and 7 for Pentium 3 and 4, respectively,
summarize the effect of the SSE for these
compilers. These results show performance
improvements from SSE instructions on both P3
and P4 processors. However, the results of Figure
7 for the Xeon processor show that performance
enhancements from SSE are typically larger than
those on the P3.

POM Floating Point Algorithm (P3 933 MHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3

GRID

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Intel

Intel (SSE)

Portland

Portland (SSE)

Fig. 6 Execution times of two compilers for the
POM floating point algorithm without and with
SSE enabled on the Pentium 3.

POM Floating Point Algorithm (P4 Xeon 3GHz)

0

2000

4000

6000

8000

10000

12000

1 2 3

GRID

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Intel

Intel (SSE2)

Lahey

Lahey (SSE2)

Portland

Portland (SSE)

Fig. 7 Execution times of three compilers for the
POM floating point algorithm without and with
SSE enabled on the Pentium 4 Xeon.

A more precise comparison of SSE performance
gains for each compiler tested here is shown in
Table 6.1. This table shows the relative gain (SSE
versus no SSE) as a percentage for each of the
three problem sizes on both processors.

Table 6.1 Percentage gain in execution times for
the POM algorithm with three compilers when
SSE/SSE2 is enabled on Pentium 3 and 4
processors, respectively.

GRID Processor Intel Lahey Portland

1 Pentium 3 19.2 -- 12.9

2 Pentium 3 23.6 -- 11.4

3 Pentium 3 19.9 -- 14.5

1 Pentium 4 1.2 -0.3 11.2

2 Pentium 4 25.5 10.3 27.6

3 Pentium 4 31.5 6.7 29.8

The largest gains in performance are for the
largest problem size on the P4 Xeon processor,
where it is clear from Fig.7, that the Intel compiler
delivers the best performance once SSE is
enabled. Nevertheless, this result for the largest
problem size cannot be considered entirely
satisfactory since it represents a performance gain
of only 2.66 when the p4 (Intel 8.0) is compared
with the P3 (Intel 7.1). Therefore, a deeper study
of the causes for this mediocre performance gain
with the newer hardware and compiler technology
seems in order.

7.0 CONCLUSIONS

This report presented performance results of
four fortran compilers in the IA-32 environment.
The variability in performance found was specific
to the problem sizes selected and represented
extremes in cache and memory access operation
types. As an example of a “real-world code” the
Princeton Ocean Model reveals that performance
gains depend in a similar way on the choice of
problem size for all compilers. In particular, when
the problem size is sufficiently large, there is a
sharp decline in performance gain over earlier
hardware and compiler generations for all the
compilers discussed here. This suggests that
considerable optimization work still remains to be
done by the end user of cache-based
architectures even when code with good vector

structure is presented to compilers with powerful
optimization strategies.

The analysis in subsequent reports will

include in-depth evaluation of performance of this
group of compilers with specialized software such
as the Intel VTune™ Performance Analyzer. Also
in this evaluation the consequences of compiler
switches for numerical precision and stability will
be investigated.

