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1.  INTRODUCTION 
 

This is part of a series of reports on a project 
to evaluate industry standard fortran 90/95 
compilers for IA-32 Linux™ commodity platforms. 
This report shows results, in a side-by-side 
comparison for each compiler, for the Intel™ 
Pentium 3 (P3) and Pentium 4 Xeon (P4) 
processors for the Princeton Ocean Model. 
 

 
2.0 CHOICE OF HARDWARE AND 
OPERATING SYSTEM 
 
Results for the wall clock time are compared for 
benchmarks compiled using four different 
Fortran compilers with the Linux™ operating 
system and one with Windows 2000 (because the 
Linux™ version was not yet installed). For this 
project benchmarks were executed in serial mode 
on a dual processor Intel™ Pentium III (256KB L2 
cache) and a dual processor Pentium 4 Xeon 
3.06GHz (1MB L3 cache). These architectures 
offers Streaming Single-Instruction-Multiple-Data 
Extensions (with version 2, SSE2, for the Xeon). 
This enables vectorization of loops operating on 
multiple elements in a data set with a single 
operation. Where compilers specifically enable 
SSE/SSE2 it has been tested.  
 

3.0 CHOICE OF COMPILERS 
 

The choice of compilers for Linux™ IA-32 
platforms now includes several vendor-supported 
products. The importance of this category is that 
vendor products have technical support and 
undergo continuous development with ports to 
new architectures as they arrive in the 
marketplace. The four compilers chosen in this 
survey are described separately in the following 
sections and compiler switches used in the 
benchmarks are also discussed. However, it is 

noted here that while all compilers offer a switch to 
target the Pentium 4, only three (Intel, Lahey, and 
Portland) offer a specific SSE/SSE2 option (see 
also notes below).  
 

3.1 Absoft 
 

Absoft f77 and f90/f95 are the Fortran 
compilers included in the Absoft Pro Fortran™ 8.0 
package for Linux™ offered by the Absoft 
Corporation (http://www.absoft.com). The f90/f95 
version has a Cray front-end and resulted from a 
five-year collaboration with Cray Research. With 
this compiler use of the –O3 compiler switch 
enables automatic architecture detection and 
selection of the Pentium 3 or 4 instruction set. 
 

3.2 Intel 
 

The Intel Fortran Compiler version 8.0 targets 
both Intel IA-32 and IA-64 (Itanium) architectures, 
but only the former has been used in this project 
so far. Details on the compiler features are 
available at HiPERiSM Consulting, LLC’s URL. 
Code for target architectures are generated with 
either the –tpp6 (Pentium 3) or –tpp7 (Pentium 4) 
switch. 
 

3.3 Lahey 
 

The Lahey/Fujitsu Fortran 95 compiler 
(hereafter Lahey) for Linux™ is available from 
Lahey Computer Systems, Inc., 
(http://www.lahey.com). The Express version 5.6 
for Microsoft Windows 2000™ was used on the 
Pentium 3 because it was available from another 
project for the same hardware. With this compiler 
use of the –tpp compiler switch enables automatic 
architecture detection for the P3 only. However, 
release v7.1 (for Windows) and v6.2 (for Linux) 
support compiler switches –tp4  and –sse2 to 
target the Pentium 4 Xeon and the SSE2 
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instruction set. The v6.2 release and the new 
switches are studied in this report. 
 

3.4 Portland 
 

The pgf90™ fortran compiler (Linux™ 
distribution) from the Portland Group, 
(http://www.pgroup.com) was used in the CDK 4.0 
release where it supports OpenMP, MPI and 
OpenMP+MPI parallel applications on HiPERiSM’s 
IA-32 Linux™ cluster. With this compiler use of the 
–fast compiler switch enables automatic 
architecture detection. Note that the CDK 5.1 
release (not used here) may offer additional 
performance enhancement of the Pentium 4 Xeon 
processor with the use of SSE2 options. 
 

3.5 Portability and migration issues 
 

Portability issues come up when legacy 
Fortran code needs to be compiled. In this respect 
a compiler that allows extensions to the f90/f95 
standard can save time and effort. The two 
compilers that offer the widest scope in portability 
are those from Absoft and Portland. Compilers 
from Lahey and Intel are less forgiving of such 
extensions. 

 
Here we also mention some migration issues 

that came up with compiler and architecture 
changes. The change in architecture from P3 to 
P4 Xeon also involves changes in library versions. 
As a result, two of the compilers had to either be 
upgraded or have patches applied. Installation of 
the Absoft 8.0 compiler for the Xeon processor 
and the newer Linux Kernel does require 
download and application of two patch files to 
resolve glibc version issues (these patch files are 
available from the Absoft URL given in Section 
3.1). Likewise, an attempt was made to install the 
7.1 release of the Intel Fortran compiler on the  P4 
Xeon. However, again version skew with glibc 
suggested the simpler option of installing the 8.0 
release. Whenever the version of a compiler is 
changed performance is also expected to change. 
This is especially true of the Intel compiler since 
major performance improvements are announced 
with the 8.0 release. Therefore, the changes in 
performance reported here for the Intel compiler 
are due to improvements in the compiler 
technology as well as the change in architecture. 

 
4.0 CHOICE OF BENCHMARKS 
 

4.1 Introduction 

 
The Princeton Ocean Model (POM) algorithm 

is used here and has been executed on a wide 
variety of platforms. The serial version is used 
here in studying how a compiler and architecture 
interact for a real-world model that was optimized 
for performance on vector register machnines. A 
fuller discussion of the POM (in an MPI version) is 
available at 
http://www.hiperism.com/hc_6_10v30.htm. What 
follows introduces only the essentials of the cases 
studied here. 
 

4.2 Princeton Ocean Model Algorithm 
 

The Princeton Ocean Model (POM) is a legacy 
Fortran 77 code with compute kernels consisting 
of over three hundred vectorizable loops. Typically 
these are triple-nested loops (i,j,k) that perform 
operations over a three-dimensional finite 
difference grid. The vertical zones over the k 
range form the outermost loop in the nest. The 
number of iterations varies with the choice of data 
set as shown in Table 1. For the choices shown 
here, the k range is constant while the two inner 
loops scale substantially. The inner loop structure 
is conventional and this code should present 
compilers with good prospects for vectorization. 
Two important features of the POM should be 
noted: (a) the algorithm is unstable in single 
precision arithmetic and therefore double precision 
is used for all compilers, and (b) long integers are 
required and this option must be specifically 
requested with the Lahey compiler which 
otherwise produces run time errors. 
 
 

Table 4.1 Problem sizes and scaling for the POM 
algorithm. 
 

GRID imax jmax kmax Scaling 

1 100 40 15 1 

2 128 128 16 4.37 

3 256 256 16 17.47 

 
 

5.0 COMPARING EXECUTION TIMES 
 

The following sections summarize execution 
time with four compilers for the POM algorithm 
with the three data sets of Table 4.1 (GRID 1 to 3). 
 

5.1 Timing performance 
 

Whole code execution was measured with 
calls to the Fortran 90/95  system_clock routine for 
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all compilers as this was deemed to be the most 
portable and accurate timing method.  
 

5.3 Princeton Ocean Model results 
 
For the POM algorithm the choice of compiler 
switches is summarized in Table 5.1. Note the use 
of the target architecture switches (often these are 
implicit in the optimization level). Timing results 
(without SSE enabled) are shown in Tables 5.2 
(Pentium 3) and 5.3 (Pentium 4). Figures 1 and 2, 
for Pentium 3 and Pentium 4 respectively, show 
these times as bar charts. For the largest problem 
size the Lahey compiler is noticeably less efficient 
than the others and this is due to the requirement 
of the --long option for large integers. 
 
 

Table 5.1 Compiler command and switches for 
the POM algorithm on the P3 and P4 Xeon 
processors. 
 

Compiler 
and 
version 
 

Compiler command 
and selected 
switches 

Effect of 
switches 

Absoft 
8.0 (P3), 
Absoft 
8.0  (P4) 

f90 –s –cpu:p6 –O3 
–N113 –ffixed 
f90 –s –cpu:p7 –O3 
–N113 –ffixed 

Optimize for P3 
or 
P4 Xeon target 

Intel 
7.1 (P3) 
 
 
Intel 
8.0 (P4) 

ifc –O3 –r8 –tpp6 –
FI 
ifc –O3 –r8 –xK 
–tpp6 –FI 
ifort –fast –r8 –tpp7 
–FI 
ifort –fast –r8 –xW 
–tpp7 –FI 

Optimize for P3 
 
Vectorize and 
enable SSE. 
Optimize for P4 
Xeon target. 
Vectorize and 
enable SSE2. 

Lahey  
5.6 (P3) 
Lahey 
6.2 (P4) 

lf95 –long –tpp –fix 
–dbl 
lf95 --long --O2 --
tp4 --fix --dbl 
lf95 --long --O2 --
tp4 --sse2 --fix --dbl 

Optimize for P3 
target. 
Optimize for P4 
target. 
Enable SSE2. 

Portland 
4.0 
(P3 and 
P4) 

pgf90 –fast  –Mvect 
–r8 
pgf90 –fast 
–Mvect=sse –r8 

Vectorize 
 
Enable SSE 

 
 

Table 5.2 Execution times (seconds) for the POM 
algorithm with four compilers on the Pentium III 
(933 MHz) without SSE enabled. 
 

GRID Absoft Intel Lahey Portland 

1 825.9 786.9 805.3 755.3 

2 4412.7 4234.6 4795.7 3736.1 

3 16761.0 16895.4 19721.9 15814.3 

 
 
 

Table 5.3 Execution times (seconds) for the POM 
algorithm with four compilers on the Pentium 4 
Xeon (3.06 MHz, 1MB L3 cache) without SSE 
enabled. 
 

GRID Absoft Intel Lahey Portland 

1 167.7 156.1 189.5 190.1 

2 1925.9 1518.9 2809.7 1756.7 

3 8685.2 7432.3 12731.8 8764.8 
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Fig. 1 Execution times of four different compilers 
for the POM floating point algorithm (without SSE) 
on the Pentium 3. 
 

POM Floating Point Algorithm (P4 Xeon 3GHz)
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Fig. 2 Execution times of four different compilers 
for the POM floating point algorithm (without SSE) 
on the Pentium 4 Xeon. 
 
It is interesting to observe the changes in 
performance between the Pentium 3 and 4. As 
expected the execution time rises for both 
processors as the problem size scales. 
 
On the Pentium 3 the spread in performance is 
relatively small (with the exception of the Lahey 



compiler result for GRID 3). The Portland compiler 
reported the lowest wall clock times for all three 
problem sizes. On the Pentium 4 the situation 
differs in two respects: (a) the Lahey compiler 
offers the longest execution times (noticeably for 
GIRD 2 and GRID 3), and (b) the Intel compiler 
delivered the shortest execution times for all three 
problem sizes. Hence, the variability in compiler 
performance is, in general, greater for the Xeon 
processor when compared to the P3. 
 
To compare the relative performance gain for each 
compiler due to a change in architecture Figure 3 
shows the ratio of the Pentium 3 execution times 
to those of the Pentium 4. For all four compilers 
the performance gain is in the range 4 to 5 for 
GRID 1, but declines to a range of 1.7 to 2.8 
(GRID 2) and 1.6 to 2.3 (GRID 3). Since the trend 
in performance degradation is the same for all four 
compilers, it is surmised that this is due to 
increases in cache misses and enhanced memory 
accesses. In particular, the poor results for GRID 3 
suggest that the largest problem size experiences 
relative performance loss due to memory 
bandwidth limitations since the memory traffic 
increases substantially as the problem size 
increases. This result is surprising in view of the 
sophisticated compiler optimizations employed by 
all four compilers. Presumably the additional layer 
of L3 cache on the P4 Xeon requires careful hand-
tuning despite the deep vector character of the two 
inner loops (i,j). A deeper performance analysis of 
the underlying reasons for this behavior is the 
subject of a future report. Memory bandwidth 
issues on both the P3 and P4 nodes are the 
subject of a separate report in this series. 
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Fig. 3 Ratio of execution times of four different 
compilers on the Pentium 3 versus the Pentium 4 
Xeon for the POM floating point algorithm (without 
SSE). 
 

 

6.0 EVALUATION OF SSE RESULTS 
 

Three of the compilers (Intel, Lahey, and 
Portland) include specific switches to enable the 
SSE2 feature of the Pentium 4 architecture. Two 
of these (Intel and Portland) also were used on the 
Pentium 3 for SSE testing. For regular data 
structure and vectorizable loops enabling these 
instruction sets should produce enhanced 
performance on this generation of processors. 

 
The SSE options are enabled as indicated in 

Table 5.1 for the POM floating point algorithm. 
Figures 6 and 7 for Pentium 3 and 4, respectively, 
summarize the effect of the SSE for these 
compilers. These results show performance 
improvements from SSE instructions on both P3 
and P4 processors. However, the results of Figure 
7 for the Xeon processor show that performance 
enhancements from SSE are typically larger than 
those on the P3.  
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Fig. 6 Execution times of two compilers for the 
POM floating point algorithm without and with 
SSE enabled on the Pentium 3. 
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Fig. 7 Execution times of three compilers for the 
POM floating point algorithm without and with 
SSE enabled on the Pentium 4 Xeon. 
 
A more precise comparison of SSE performance 
gains for each compiler tested here is shown in 
Table 6.1. This table shows the relative gain (SSE 
versus no SSE) as a percentage for each of the 
three problem sizes on both processors. 
 
 

Table 6.1 Percentage gain in execution times for 
the POM algorithm with three compilers when 
SSE/SSE2 is enabled on Pentium 3 and 4 
processors, respectively. 
 

GRID Processor Intel Lahey Portland 

1 Pentium 3 19.2 -- 12.9 

2 Pentium 3 23.6 -- 11.4 

3 Pentium 3 19.9 -- 14.5 

1 Pentium 4 1.2 -0.3 11.2 

2 Pentium 4 25.5 10.3 27.6 

3 Pentium 4 31.5 6.7 29.8 

 
The largest gains in performance are for the 
largest problem size on the P4 Xeon processor, 
where it is clear from Fig.7, that the Intel compiler 
delivers the best performance once SSE is 
enabled. Nevertheless, this result for the largest 
problem size cannot be considered entirely 
satisfactory since it represents a performance gain 
of only 2.66 when the p4 (Intel 8.0) is compared 
with the P3 (Intel 7.1). Therefore, a deeper study 
of the causes for this mediocre performance gain 
with the newer hardware and compiler technology 
seems in order. 
 

 

7.0 CONCLUSIONS 
 

This report presented performance results of 
four fortran compilers in the IA-32 environment. 
The variability in performance found was specific 
to the problem sizes selected and represented 
extremes in cache and memory access operation 
types. As an example of a “real-world code” the 
Princeton Ocean Model reveals that performance 
gains depend in a similar way on the choice of 
problem size for all compilers.  In particular, when 
the problem size is sufficiently large, there is a 
sharp decline in performance gain over earlier 
hardware and compiler generations for all the 
compilers discussed here. This suggests that 
considerable optimization work still remains to be 
done by the end user of cache-based 
architectures even when code with good vector 

structure is presented to compilers with powerful 
optimization strategies. 

 
The analysis in subsequent reports will 

include in-depth evaluation of performance of this 
group of compilers with specialized software such 
as the Intel VTune™ Performance Analyzer. Also 
in this evaluation the consequences of compiler 
switches for numerical precision and stability will 
be investigated. 


