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1.  INTRODUCTION 
 

This is part of a series of reports on a project 
to evaluate industry standard fortran 90/95 
compilers for IA-32 Linux™ commodity platforms. 
This report shows results, in a side-by-side 
comparison for each compiler, for the Intel™ 
Pentium 3 (P3) and Pentium 4 Xeon (P4) 
processors for the Stommel Ocean Model. 
 

 
2.0 CHOICE OF HARDWARE AND 
OPERATING SYSTEM 
 
Results for the wall clock time are compared for 
benchmarks compiled using four different Fortran 
compilers with the Linux™ operating system and 
one with Windows 2000 (because the Linux™ 
version was not yet installed). For this project 
benchmarks were executed in serial mode on a 
dual processor Intel™ Pentium III (256KB L2 
cache) and a dual processor Pentium 4 Xeon 
3.06GHz (1MB L3 cache). These architectures 
offers Streaming Single-Instruction-Multiple-Data 
Extensions (with version 2, SSE2, for the Xeon). 
This enables vectorization of loops operating on 
multiple elements in a data set with a single 
operation. Where compilers specifically enable 
SSE/SSE2 it has been tested.  
 

3.0 CHOICE OF COMPILERS 
 

The choice of compilers for Linux™ IA-32 
platforms now includes several vendor-supported 
products. The importance of this category is that 
vendor products have technical support and 
undergo continuous development with ports to 
new architectures as they arrive in the 
marketplace. The four compilers chosen in this 
survey are described separately in the following 
sections and compiler switches used in the two 
benchmarks are also discussed. However, it is 

noted here that while all compilers offer a switch to 
target the Pentium 4, only three (Intel, Lahey, and 
Portland) offer a specific SSE/SSE2 option (see 
also notes below).  
 

3.1 Absoft 
 

Absoft f77 and f90/f95 are the Fortran 
compilers included in the Absoft Pro Fortran™ 8.0 
package for Linux™ offered by the Absoft 
Corporation (http://www.absoft.com). The f90/f95 
version has a Cray front-end and resulted from a 
five-year collaboration with Cray Research. With 
this compiler use of the –O3 compiler switch 
enables automatic architecture detection and 
selection of the Pentium 3 or 4 instruction set. 
 

3.2 Intel 
 

The Intel Fortran Compiler version 8.0 targets 
both Intel IA-32 and IA-64 (Itanium) architectures, 
but only the former has been used in this project 
so far. Details on the compiler features are 
available at HiPERiSM Consulting, LLC’s URL. 
Code for target architectures generated with either 
the –tpp6 (Pentium 3) or –tpp7 (Pentium 4) switch. 
 

3.3 Lahey 
 

The Lahey/Fujitsu Fortran 95 compiler 
(hereafter Lahey) for Linux™ is available from 
Lahey Computer Systems, Inc., 
(http://www.lahey.com). The Express version 5.6 
for Microsoft Windows 2000™ was used on the P3 
and P4 because it was available from another 
project for the same hardware. With this compiler 
use of the –tpp compiler switch enables automatic 
architecture detection for the P3 only. However, 
release v7.1 (for Windows) and v6.2 (for Linux) 
support compiler switches –tp4  and –sse2 to 
target the Pentium 4 Xeon and the SSE2 
instruction set. The v6.2 release and the new 
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switches were studied for this report, but 
surprisingly, showed timing results that differed 
only by a few percent from those for the 5.6 
version shown here. The use of the SSE2 switch 
likewise produced negligible difference. This 
suggests that the 5.6 version of this compiler 
already performs excellent optimizations of the 
regular double loop structure on this benchmark 
where the main arithmetic work is performed. 
 

3.4 Portland 
 

The pgf90™ fortran compiler (Linux™ 
distribution) from the Portland Group, 
(http://www.pgroup.com) was used in the CDK 4.0 
release where it supports OpenMP, MPI and 
OpenMP+MPI parallel applications on HiPERiSM’s 
IA-32 Linux™ cluster. With this compiler use of the 
–fast compiler switch enables automatic 
architecture detection. Note that the CDK 5.1 
release (not used here) may offer additional 
performance enhancement of the Pentium 4 Xeon 
processor with the use of SSE2 options. 
 

3.5 Portability and migration issues 
 

Portability issues come up when legacy 
Fortran code needs to be compiled. In this respect 
a compiler that allows extensions to the f90/f95 
standard can save time and effort. The two 
compilers that offer the widest scope in portability 
are those from Absoft and Portland. Compilers 
from Lahey and Intel are less forgiving of such 
extensions. 

 
Here we also mention some migration issues 

that came up with compiler and architecture 
changes. The change in architecture from P3 to 
P4 Xeon also involves changes in library versions. 
As a result, two of the compilers had to either be 
upgraded or have patches applied. Installation of 
the Absoft 8.0 compiler for the Xeon processor 
and the newer Linux Kernel does require 
download and application of two patch files to 
resolve glibc version issues (these patch files are 
available from the Absoft URL given in Section 
3.1). Likewise, an attempt was made to install the 
7.1 release of the Intel Fortran compiler on the P4 
Xeon. However, again version skew with glibc 
suggested the simpler option of installing the 8.0 
release. Whenever the version of a compiler is 
changed performance is also expected to change. 
This is especially true of the Intel compiler since 
major performance improvements are announced 
with the 8.0 release. Therefore, the changes in 
performance reported here for the Intel compiler 

are due to improvements in the compiler 
technology as well as the change in architecture. 

 
4.0 CHOICE OF BENCHMARKS 
 

4.1 Introduction 
 

The algorithms used here have been executed 
on a wide variety of platforms and are excellent 
benchmarks in studying how a compiler and 
architecture interact for the types of operation they 
use. A fuller discussion of the benchmarks is 
available in previous reports (HCTR-2001-1). 
What follows is only a brief introduction. 
 

4.2 Stommel Ocean Model Algorithm 
 

The Stommel Ocean Model (SOM) is a legacy 
Fortran 77 code with a compute kernel consisting 
of a double-nested loop that performs a Jacobi 
iteration sweep over a two-dimensional finite 
difference grid. The number of iterations is fixed at 
100 and, because the data set is regular and the 
loop structure is conventional, this code should 
present compilers with good prospects for 
vectorization. Therefore, as a floating point 
algorithm, the SOM is useful in studying 
performance scaling with problem size N over the 
N x N grid. Six cases were used in this analysis for 
data sets with grid dimensions in the range 
N=2000 (1000) 7000, corresponding to problem 
size scaling from N2=4x106 to 49x106 data points. 
 

5.0 COMPARING EXECUTION TIMES 
 

The following sections summarize execution 
time with four compilers for the SOM algorithms 
with six data sets (Cases 1 to 6). 
 

5.1 Timing performance 
 

Whole code execution was measured with 
calls to the Fortran 90/95  system_clock routine for 
all compilers as this was deemed to be the most 
portable and accurate timing method. 
 

5.3 Stommel Ocean Model results 
 
For the SOM algorithm the choice of compiler 
switches is summarized in Table 5.1. For the 
Pentium III case the only differences are the use 
of the p6 target architecture switch and the Intel 
7.1 release. Timing results (without SSE enabled) 
are shown in Tables 5.2 (Pentium 3) and 5.3 
(Pentium 4). Figures 1 and 2, for Pentium 3 and 
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Pentium 4 respectively, show these times as bar 
charts. 
 
 

Table 5.1 Compiler command and switches for 
the SOM algorithm on the P3 and P4 processors. 
 

Compiler 
and 
version 
 

Compiler command 
and selected 
switches 

Effect of 
switches 

Absoft 
8.0 

f90 –s –cpu:p6 –O3 
–ffixed 
f90 –s –cpu:p7 –O3 
–ffixed 

Optimize for P3 
or 
P4 Xeon target 

Intel 
7.1 (P3) 
 
 
Intel 
8.0 (P4) 

ifc –O3 –tpp6 –FI 
 
ifc –O3 –xK 
–tpp6 –FI 
ifort –fast –tpp7 –FI 
 
ifort –fast –xW 
–tpp7 –FI 
 

Optimize for P3 
target. 
Vectorize and 
enable SSE. 
Optimize for P4 
Xeon target. 
Vectorize and 
enable SSE2. 

Lahey 
5.6 

lf95 –tpp -fix Optimize for P3 
(also used on 
P4) 

Portland 
4.0 (P3 
and P4) 

pgf90 –fast  –Mvect 
pgf90 –fast 
–Mvect=sse 

Vectorize 
Enable SSE 

 
 

Table 5.2 Execution times (seconds) for the SOM 
algorithm with four compilers on the Pentium III 
(933 MHz) without SSE enabled. 
 

N Absoft Intel Lahey Portland 

2000 50.0 38.8 36.4 41.4 

3000 110.5 94.4 87.7 92.7 

4000 197.7 159.6 150.3 163.3 

5000 305.3 224.3 246.8 253.1 

6000 443.4 320.0 332.0 388.5 

7000 586.5 427.6 477.9 524.4 

 
 

Table 5.3 Execution times (seconds) for the SOM 
algorithm with four compilers on the Pentium 4 
Xeon (3.06 MHz, 1MB L3 cache) without SSE 
enabled. 
 

N Absoft Intel Lahey Portland 

2000 8.17 5.44 6.77 7.62 

3000 20.2 12.7 15.8 17.7 

4000 37.5 24.5 30.6 33.0 

5000 52.5 37.8 40.1 50.8 

6000 72.8 50.1 62.4 71.5 

7000 101.6 72.4 85.2 95.4 
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Fig. 1 Execution times of four different compilers 
for the SOM floating point algorithm (without SSE) 
on the Pentium 3. 
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Fig. 2 Execution times of four different compilers 
for the SOM floating point algorithm (without SSE) 
on the Pentium 4 Xeon. 
 
It is interesting to observe the changes in 
performance between the Pentium 3 and 4. On the 
Pentium 3 the Lahey compiler reported the lowest 
wall clock times for the first three cases and the 
Intel compiler does this for the last three cases. 
On the Pentium 4 the Lahey compiler either 
equals, or outperforms, the other compilers. To 
compare the performance gain for each compiler 
due to a change in architecture Figure 3 shows the 
ratio of the Pentium 3 execution times to those of 
the Pentium 4. For all cases the performance gain 
is at least of the order of a factor of 5, with some 
variability. It is surmised that this is due to 
differences in use of processor and cache in each 
compiler. A deeper performance analysis of the 
underlying reasons for this is the subject of a 
future report. 
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Fig. 3 Ratio of execution times of four different 
compilers on the Pentium 3 versus the Pentium 4 
Xeon for the SOM floating point algorithm (without 
SSE). 
 
To study overall performance features Figures 4 
and 5 for the Pentium 3 and Pentium 4 Xeon, 
respectively, show the trends in descriptive 
statistics for the six problem sizes. As expected 
the mean and standard deviation of the execution 
time rise for both processors. However, the 
coefficient of variation (standard deviation divided 
by the mean) of execution times within this group 
of compilers initially fluctuates slowly as problem 
size increases. But for the largest problem size the 
difference in execution time for different compilers 
shows a diminishing trend. What is more, the 
variability in compiler performance is, in general, 
very much lower for the Xeon processors. For 
example, in Case 6 the coefficient of variation 
shows values of 0.135 and 0.0788 for Pentium 3 
and 4 respectively. In other words, for problems 
with regular data structures and workloads 
dominated by a single loop nest, the differences 
between compiler performance diminishes as 
problem size increases, and is even smaller on 
processors with larger cache sizes. 
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Fig. 4 Execution time statistics for four different 
compilers with the SOM floating point algorithm on 
the Pentium 3. 
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Fig. 5 Execution time statistics for four different 
compilers with the SOM floating point algorithm on 
the Pentium 4 Xeon. 
 
 

6.0 EVALUATION OF SSE RESULTS 
 

Two of the compilers (Intel and Portland) 
include specific switches to enable the SSE 
feature of the Pentium III architecture. For regular 
data structure and vectorizable loops this should 
produce enhanced performance on this generation 
of processors. 

 
The SSE options are enabled as indicated in 

Table 5.1 for the SOM floating point algorithm 
(note that the SSE option is irrelevant for the 
Kallman integer and logical algorithm). Figures 6 
and 7 for Pentium 3 and 4, respectively, 
summarize the effect of the SSE for the Intel and 
Portland compilers. The results of Figure 7 for the 
Xeon processor show that performance 
enhancements from SSE are negligible for the 
Intel compiler and marginal for the Portland 
compiler. This is in remarkable contrast to the 
situation on the Pentium 3 shown in Figure 6 
where, for regular data structures, and 
vectorizable code with long loops, dramatic 
performance enhancements are possible from 
enabling SSE. 
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Fig. 6 Execution times of two compilers for the 
SOM floating point algorithm without and with 
SSE enabled on the Pentium 3. 
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Fig. 7 Execution times of two compilers for the 
SOM floating point algorithm without and with 
SSE enabled on the Pentium 4 Xeon. 
 
It is instructive to compare theses results with 
those for the Pentium II in the first of these reports 
(HCTR-1999-1) for the Absoft compiler on the 
Pentium II processors. The Xeon results reported 
here take some 7 times less execution time. This 
improvement is due to performance developments 
in both compiler and architecture technologies. 
 

 

7.0 CONCLUSIONS 
 

This report presented performance results of 
four fortran compilers in the IA-32 environment. 
The variability in performance found was specific 
to the benchmarks selected and represented 
extremes in arithmetic operation types. Variability 
in performance results is expected but the details 
will depend on the balance of integer, logical, and 

floating point operations. Real-world codes have 
different mixtures of such operations.  Therefore 
subsequent reports will study examples of “real-
world” code as used in weather, climate, and air 
quality models.  

 
The analysis in subsequent reports will 

include in-depth evaluation of performance of this 
group of compilers with specialized software such 
as the Intel VTune™ Performance Analyzer. Also 
in this evaluation the consequences of compiler 
switches for numerical precision and stability will 
be investigated. 


