

COMPARING COMPILERS ON INTEL™ PENTIUM 3 and PENTIUM 4

PROCESSORS WITH THE SOM FLOATING POINT ALGORITHM
George Delic *

HiPERiSM Consulting, LLC, Durham, NC
e-mail: george@hiperism.com

Web address: http://www.hiperism.com
Voice (919) 484-9803 Fax (919) 806-2813

1. INTRODUCTION

This is part of a series of reports on a project
to evaluate industry standard fortran 90/95
compilers for IA-32 Linux™ commodity platforms.
This report shows results, in a side-by-side
comparison for each compiler, for the Intel™
Pentium 3 (P3) and Pentium 4 Xeon (P4)
processors for the Stommel Ocean Model.

2.0 CHOICE OF HARDWARE AND
OPERATING SYSTEM

Results for the wall clock time are compared for
benchmarks compiled using four different Fortran
compilers with the Linux™ operating system and
one with Windows 2000 (because the Linux™
version was not yet installed). For this project
benchmarks were executed in serial mode on a
dual processor Intel™ Pentium III (256KB L2
cache) and a dual processor Pentium 4 Xeon
3.06GHz (1MB L3 cache). These architectures
offers Streaming Single-Instruction-Multiple-Data
Extensions (with version 2, SSE2, for the Xeon).
This enables vectorization of loops operating on
multiple elements in a data set with a single
operation. Where compilers specifically enable
SSE/SSE2 it has been tested.

3.0 CHOICE OF COMPILERS

The choice of compilers for Linux™ IA-32
platforms now includes several vendor-supported
products. The importance of this category is that
vendor products have technical support and
undergo continuous development with ports to
new architectures as they arrive in the
marketplace. The four compilers chosen in this
survey are described separately in the following
sections and compiler switches used in the two
benchmarks are also discussed. However, it is

noted here that while all compilers offer a switch to
target the Pentium 4, only three (Intel, Lahey, and
Portland) offer a specific SSE/SSE2 option (see
also notes below).

3.1 Absoft

Absoft f77 and f90/f95 are the Fortran
compilers included in the Absoft Pro Fortran™ 8.0
package for Linux™ offered by the Absoft
Corporation (http://www.absoft.com). The f90/f95
version has a Cray front-end and resulted from a
five-year collaboration with Cray Research. With
this compiler use of the –O3 compiler switch
enables automatic architecture detection and
selection of the Pentium 3 or 4 instruction set.

3.2 Intel

The Intel Fortran Compiler version 8.0 targets
both Intel IA-32 and IA-64 (Itanium) architectures,
but only the former has been used in this project
so far. Details on the compiler features are
available at HiPERiSM Consulting, LLC’s URL.
Code for target architectures generated with either
the –tpp6 (Pentium 3) or –tpp7 (Pentium 4) switch.

3.3 Lahey

The Lahey/Fujitsu Fortran 95 compiler
(hereafter Lahey) for Linux™ is available from
Lahey Computer Systems, Inc.,
(http://www.lahey.com). The Express version 5.6
for Microsoft Windows 2000™ was used on the P3
and P4 because it was available from another
project for the same hardware. With this compiler
use of the –tpp compiler switch enables automatic
architecture detection for the P3 only. However,
release v7.1 (for Windows) and v6.2 (for Linux)
support compiler switches –tp4 and –sse2 to
target the Pentium 4 Xeon and the SSE2
instruction set. The v6.2 release and the new

http://www.hiperism.com/
http://www.lahey.com/

switches were studied for this report, but
surprisingly, showed timing results that differed
only by a few percent from those for the 5.6
version shown here. The use of the SSE2 switch
likewise produced negligible difference. This
suggests that the 5.6 version of this compiler
already performs excellent optimizations of the
regular double loop structure on this benchmark
where the main arithmetic work is performed.

3.4 Portland

The pgf90™ fortran compiler (Linux™
distribution) from the Portland Group,
(http://www.pgroup.com) was used in the CDK 4.0
release where it supports OpenMP, MPI and
OpenMP+MPI parallel applications on HiPERiSM’s
IA-32 Linux™ cluster. With this compiler use of the
–fast compiler switch enables automatic
architecture detection. Note that the CDK 5.1
release (not used here) may offer additional
performance enhancement of the Pentium 4 Xeon
processor with the use of SSE2 options.

3.5 Portability and migration issues

Portability issues come up when legacy
Fortran code needs to be compiled. In this respect
a compiler that allows extensions to the f90/f95
standard can save time and effort. The two
compilers that offer the widest scope in portability
are those from Absoft and Portland. Compilers
from Lahey and Intel are less forgiving of such
extensions.

Here we also mention some migration issues

that came up with compiler and architecture
changes. The change in architecture from P3 to
P4 Xeon also involves changes in library versions.
As a result, two of the compilers had to either be
upgraded or have patches applied. Installation of
the Absoft 8.0 compiler for the Xeon processor
and the newer Linux Kernel does require
download and application of two patch files to
resolve glibc version issues (these patch files are
available from the Absoft URL given in Section
3.1). Likewise, an attempt was made to install the
7.1 release of the Intel Fortran compiler on the P4
Xeon. However, again version skew with glibc
suggested the simpler option of installing the 8.0
release. Whenever the version of a compiler is
changed performance is also expected to change.
This is especially true of the Intel compiler since
major performance improvements are announced
with the 8.0 release. Therefore, the changes in
performance reported here for the Intel compiler

are due to improvements in the compiler
technology as well as the change in architecture.

4.0 CHOICE OF BENCHMARKS

4.1 Introduction

The algorithms used here have been executed
on a wide variety of platforms and are excellent
benchmarks in studying how a compiler and
architecture interact for the types of operation they
use. A fuller discussion of the benchmarks is
available in previous reports (HCTR-2001-1).
What follows is only a brief introduction.

4.2 Stommel Ocean Model Algorithm

The Stommel Ocean Model (SOM) is a legacy
Fortran 77 code with a compute kernel consisting
of a double-nested loop that performs a Jacobi
iteration sweep over a two-dimensional finite
difference grid. The number of iterations is fixed at
100 and, because the data set is regular and the
loop structure is conventional, this code should
present compilers with good prospects for
vectorization. Therefore, as a floating point
algorithm, the SOM is useful in studying
performance scaling with problem size N over the
N x N grid. Six cases were used in this analysis for
data sets with grid dimensions in the range
N=2000 (1000) 7000, corresponding to problem
size scaling from N2=4x106 to 49x106 data points.

5.0 COMPARING EXECUTION TIMES

The following sections summarize execution
time with four compilers for the SOM algorithms
with six data sets (Cases 1 to 6).

5.1 Timing performance

Whole code execution was measured with
calls to the Fortran 90/95 system_clock routine for
all compilers as this was deemed to be the most
portable and accurate timing method.

5.3 Stommel Ocean Model results

For the SOM algorithm the choice of compiler
switches is summarized in Table 5.1. For the
Pentium III case the only differences are the use
of the p6 target architecture switch and the Intel
7.1 release. Timing results (without SSE enabled)
are shown in Tables 5.2 (Pentium 3) and 5.3
(Pentium 4). Figures 1 and 2, for Pentium 3 and

http://www.pgroup.com/

Pentium 4 respectively, show these times as bar
charts.

Table 5.1 Compiler command and switches for
the SOM algorithm on the P3 and P4 processors.

Compiler
and
version

Compiler command
and selected
switches

Effect of
switches

Absoft
8.0

f90 –s –cpu:p6 –O3
–ffixed
f90 –s –cpu:p7 –O3
–ffixed

Optimize for P3
or
P4 Xeon target

Intel
7.1 (P3)

Intel
8.0 (P4)

ifc –O3 –tpp6 –FI

ifc –O3 –xK
–tpp6 –FI
ifort –fast –tpp7 –FI

ifort –fast –xW
–tpp7 –FI

Optimize for P3
target.
Vectorize and
enable SSE.
Optimize for P4
Xeon target.
Vectorize and
enable SSE2.

Lahey
5.6

lf95 –tpp -fix Optimize for P3
(also used on
P4)

Portland
4.0 (P3
and P4)

pgf90 –fast –Mvect
pgf90 –fast
–Mvect=sse

Vectorize
Enable SSE

Table 5.2 Execution times (seconds) for the SOM
algorithm with four compilers on the Pentium III
(933 MHz) without SSE enabled.

N Absoft Intel Lahey Portland

2000 50.0 38.8 36.4 41.4

3000 110.5 94.4 87.7 92.7

4000 197.7 159.6 150.3 163.3

5000 305.3 224.3 246.8 253.1

6000 443.4 320.0 332.0 388.5

7000 586.5 427.6 477.9 524.4

Table 5.3 Execution times (seconds) for the SOM
algorithm with four compilers on the Pentium 4
Xeon (3.06 MHz, 1MB L3 cache) without SSE
enabled.

N Absoft Intel Lahey Portland

2000 8.17 5.44 6.77 7.62

3000 20.2 12.7 15.8 17.7

4000 37.5 24.5 30.6 33.0

5000 52.5 37.8 40.1 50.8

6000 72.8 50.1 62.4 71.5

7000 101.6 72.4 85.2 95.4

SOM Floating Point Algorithm (PIII 933 MHz)

0

100

200

300

400

500

600

700

1 2 3 4 5 6

Case

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Absoft

Intel

Lahey

Portland

Fig. 1 Execution times of four different compilers
for the SOM floating point algorithm (without SSE)
on the Pentium 3.

SOM Floating Point Algorithm

(P4 Xeon 3GHz, 1MB L3 cache)

0

20

40

60

80

100

120

1 2 3 4 5 6

Case

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Absoft

Intel

Lahey

Portland

Fig. 2 Execution times of four different compilers
for the SOM floating point algorithm (without SSE)
on the Pentium 4 Xeon.

It is interesting to observe the changes in
performance between the Pentium 3 and 4. On the
Pentium 3 the Lahey compiler reported the lowest
wall clock times for the first three cases and the
Intel compiler does this for the last three cases.
On the Pentium 4 the Lahey compiler either
equals, or outperforms, the other compilers. To
compare the performance gain for each compiler
due to a change in architecture Figure 3 shows the
ratio of the Pentium 3 execution times to those of
the Pentium 4. For all cases the performance gain
is at least of the order of a factor of 5, with some
variability. It is surmised that this is due to
differences in use of processor and cache in each
compiler. A deeper performance analysis of the
underlying reasons for this is the subject of a
future report.

SOM Floating Point Algorithm

(3GHz P4 versus 933 MHz P3)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

Case

R
a

ti
o

 o
f

P
3

 t
o

 P
4

 t
im

e

Absoft

Intel

Lahey

Portland

Fig. 3 Ratio of execution times of four different
compilers on the Pentium 3 versus the Pentium 4
Xeon for the SOM floating point algorithm (without
SSE).

To study overall performance features Figures 4
and 5 for the Pentium 3 and Pentium 4 Xeon,
respectively, show the trends in descriptive
statistics for the six problem sizes. As expected
the mean and standard deviation of the execution
time rise for both processors. However, the
coefficient of variation (standard deviation divided
by the mean) of execution times within this group
of compilers initially fluctuates slowly as problem
size increases. But for the largest problem size the
difference in execution time for different compilers
shows a diminishing trend. What is more, the
variability in compiler performance is, in general,
very much lower for the Xeon processors. For
example, in Case 6 the coefficient of variation
shows values of 0.135 and 0.0788 for Pentium 3
and 4 respectively. In other words, for problems
with regular data structures and workloads
dominated by a single loop nest, the differences
between compiler performance diminishes as
problem size increases, and is even smaller on
processors with larger cache sizes.

SOM Floating Point Algorithm (PIII 933

MHz): Statistics for four compilers

0

100

200

300

400

500

600

1 2 3 4 5 6

Case

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

Mean

Standard
Deviation

Coefficient of
Variation x 1000

Fig. 4 Execution time statistics for four different
compilers with the SOM floating point algorithm on
the Pentium 3.

SOM Floating Point Algorithm (P4 Xeon 3GHz,

1MB L3 cache): Statistics for four compilers

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Case

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Mean

Standard Deviation

Coefficient of Variation
x 500

Fig. 5 Execution time statistics for four different
compilers with the SOM floating point algorithm on
the Pentium 4 Xeon.

6.0 EVALUATION OF SSE RESULTS

Two of the compilers (Intel and Portland)
include specific switches to enable the SSE
feature of the Pentium III architecture. For regular
data structure and vectorizable loops this should
produce enhanced performance on this generation
of processors.

The SSE options are enabled as indicated in

Table 5.1 for the SOM floating point algorithm
(note that the SSE option is irrelevant for the
Kallman integer and logical algorithm). Figures 6
and 7 for Pentium 3 and 4, respectively,
summarize the effect of the SSE for the Intel and
Portland compilers. The results of Figure 7 for the
Xeon processor show that performance
enhancements from SSE are negligible for the
Intel compiler and marginal for the Portland
compiler. This is in remarkable contrast to the
situation on the Pentium 3 shown in Figure 6
where, for regular data structures, and
vectorizable code with long loops, dramatic
performance enhancements are possible from
enabling SSE.

SOM Floating Point Algorithm (PIII 933 MHz)

0

100

200

300

400

500

600

1 2 3 4 5 6

Case

W
a
ll
 t

im
e
 (

s
e
c
o

n
d

s
)

Intel

Intel (SSE)

Portland

Portland (SSE)

Fig. 6 Execution times of two compilers for the
SOM floating point algorithm without and with
SSE enabled on the Pentium 3.

SOM Floating Point Algorithm

(P4 Xeon 3GHz, 1MB L3 cache)

0

20

40

60

80

100

120

1 2 3 4 5 6

Case

W
a
ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Intel

Intel (SSE)

Portland

Portland (SSE)

Fig. 7 Execution times of two compilers for the
SOM floating point algorithm without and with
SSE enabled on the Pentium 4 Xeon.

It is instructive to compare theses results with
those for the Pentium II in the first of these reports
(HCTR-1999-1) for the Absoft compiler on the
Pentium II processors. The Xeon results reported
here take some 7 times less execution time. This
improvement is due to performance developments
in both compiler and architecture technologies.

7.0 CONCLUSIONS

This report presented performance results of
four fortran compilers in the IA-32 environment.
The variability in performance found was specific
to the benchmarks selected and represented
extremes in arithmetic operation types. Variability
in performance results is expected but the details
will depend on the balance of integer, logical, and

floating point operations. Real-world codes have
different mixtures of such operations. Therefore
subsequent reports will study examples of “real-
world” code as used in weather, climate, and air
quality models.

The analysis in subsequent reports will

include in-depth evaluation of performance of this
group of compilers with specialized software such
as the Intel VTune™ Performance Analyzer. Also
in this evaluation the consequences of compiler
switches for numerical precision and stability will
be investigated.

